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Abstract
Interpretations of paleodepositional environments and paleogeography are 

important for reconstructing Earth history. Only a small number of attempts have been 

made at mapping the Jurassic depositional environments of eastern Australia. 

Consequently, a detailed understanding of the setting of Australia in Gondwana is 

lacking. Core, wireline logs, 2D, and 3D seismic data from the Precipice Sandstone and 

Evergreen Formation in the Surat Basin have been used to construct maps that show 

the evolution of depositional environments through the Early Jurassic.

The results show that the succession consists of three 3rd order sequences 

(SQ1–SQ3) that were controlled by eustatic changes in sea level. The lowstand 

systems tract in SQ1 comprises braided river and braid delta deposits, confined to a 

narrow strip that parallels the basin centre. The strata initially were deposited in two 

sub-basins atop an unconformity surface, with rivers flowing in different orientations 

depending upon the sub-basin. The transgressive systems tract of SQ1 to lowstand 

systems tract of SQ3 is dominated by fluvial-deltaic systems that built towards a single 

merged basin centre. Finally, the transgressive and highstand systems tracts of SQ3 

show nearshore deposits building towards a shallow marine basin centre. In the 

youngest part of this interval, ironstone shoals are the most conspicuous facies, the 

thickness and number of which increase with increasing marine-influence. We interpret 

a corridor to the open ocean through the Clarence-Moreton Basin or to the Carpentaria 

and Papuan basins, evidence of which has since been eroded. 

Our results challenge a commonly held view that eastern Australian basins were not 

influenced by eustasy. We propose a much more dynamic paleogeographic setting 

comprising a complex mixture of fluvial, deltaic, and shallow marine sedimentary 

environments. This work can be used in the future to unravel the stratigraphic 

relationships between Mesozoic eastern Australian basins, or by geoscientists working 

in other basins globally as an analogue for understanding the complex interplay of 

paralic depositional systems in data poor areas.
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1. Introduction
Reconstruction of paleodepositional environments and paleogeography are 

highly sought after because of their implications for understanding the organization of 

continents (Scotese and McKerrow, 1990; Zhang et al., 2004; Ingersoll, 2012; Cawood 

et al., 2018), past climatic conditions (Kutzbach and Gallimore, 1989; Postma, 2001; 

Wang et al., 2013; Zeng et al., 2019), faunal distribution patterns (Fastovsky, 1987; 

Viseras et al., 2006), and for improving exploration and modelling of water, energy, and 

mineral resources (La Croix et al., 2013; Deveugle et al., 2014; Howell et al., 2014; 

Lech et al., 2016; Nyberg and Howell, 2016; La Croix et al., 2017; La Croix et al., 

2019b). The interpretation of depositional environments commonly relies upon outcrop 

and core observations (Burbank and Verges, 1994; Baniak et al., 2014; Ainsworth et al., 

2015; Jones et al., 2018), as well as analogues to modern settings (Gingras et al., 1999; 

La Croix et al., 2019a). Additional data that have been used to bolster mapping and 

interpretation includes macro- and micro-fossils (Ellison, 1951; Carboni et al., 2010; 

Pilarczyk et al., 2014), sediment geochemistry (Eganhouse and Kaplan, 1988; Jiang 

and George, 2018), as well as seismic and other sub-surface imaging techniques 

(Wooldridge and Hickin, 2005; Zhu et al., 2017). Geochronology has also been applied 

to constrain the timing and evolution of depositional systems (Bauch et al., 1999; Shu et 

al., 2006; DeCelles et al., 2007; McDougall, 2008). However, real world datasets used 

to map the distribution of depositional environments through time are often sparse, 

incomplete, and spread over large distances. It is commonly impractical or even 

impossible to get an accurate depiction of past landscapes at regional scales. To 

mitigate this problem, a substantial body of recent research has focused on using 

petrophysical wireline logs to interpret sedimentary facies and their associated 

depositional environments (e.g., Wang and Timothy, 2013; He et al., 2016; He et al., 

2019). This is due to the abundance of wireline logs collected from petroleum-bearing 

sedimentary basins, the relatively high vertical resolution of logs, as well as the fact that 

logs commonly intersect large sections of the stratigraphic column.

Only a few regional accounts of the depositional environments in eastern Australia 

during the Jurassic currently exist in the public domain (Fig. 1; Frakes et al., 1987; 

Bradshaw and Yeung, 1990; Struckmeyer and Totterdell, 1990; Bradshaw and Yeung, 

Page 3 of 97 Sedimentology



4

1992; Bianchi et al., 2018; Wainman and McCabe, 2018). However, the resolution of the 

maps derived from these studies are relatively low and the datasets are limited in their 

stratigraphic and/or geographic scope. Australia is one of the major continental 

fragments that comprised Gondwana – the southern portion of Pangea. It was situated 

along the eastern Gondwana margin both adjacent to the Tethys Ocean and facing the 

Panthalassa Ocean (Veevers, 2000). The stratigraphic succession contained in the 

Great Australian Superbasin (Eromanga, Surat, Carpentaria, Clarence-Moreton, 

Nambour, Laura, Peninsula, and Money Shoals basins; Jell, 2013) is relatively complete 

and records important information about the nature of Gondwana prior to and during 

initial breakup of Pangea around 185 Ma (Veevers, 2004; 2006). Updated 

conceptualizations are needed that utilize multidisciplinary techniques and datasets to 

improve our understanding of depositional environments in the Jurassic of eastern 

Australia. This is especially true in the context of global sea level changes and 

tectonics.

To fill the gap in understanding of the paleo-depositional environments in eastern 

Australia, in this study we integrate data from core, wireline logs, as well as 2D and 3D 

seismic from the Precipice Sandstone and Evergreen Formation in the Surat Basin. The 

main objectives of this work were to provide a series of “time-slice” maps, showing the 

evolution of environments and associated geobody distributions. With these facies and 

environment maps, the paleogeographic context of Jurassic eastern Australia can be 

refined and linked with eustatic sea level cycles (e.g., Haq et al., 1987). This will 

significantly contribute to understanding the relationship between eastern Gondwana 

and other related terranes such as Zealandia.

2. Geological Setting
2.1 Global Context of the Australian Continent

From the Neoproterozoic to the Mesozoic (~650–100 Ma), Australia was 

positioned next to Antarctica and India, with Africa and South America situated further 

west, together forming Gondwana as the southern landmass of Pangea (Veevers, 

2004). In the earliest Jurassic (~201 Ma), initial rifting between Antarctica and Australia 

had occurred, though Gondwana had not yet begun to break up (Quilty, 1984; Bomfleur 
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et al., 2014). A tensional tectonic regime characterized much of the Australian continent 

with the northwestern margin becoming increasingly faulted, producing abundant rift 

valleys as the greater Indian landmass was wrenched away (Veevers et al., 1984). In 

contrast, convergent tectonics were occurring in the northeastern quadrant, with a 

subduction zone located offshore of the Maryborough Basin (Veevers, 1984; Bradshaw 

and Yeung, 1992). Finally, at approximately 185 Ma Gondwana began to break up, 

subsequently forming the more familiar dispersed arrangement of continents that 

characterizes the globe today (Veevers, 2004). 

Through the development, evolution, and breakup of Gondwana the Australian 

continent shifted significantly in paleo-latitude and orientation. Apparent polar wander 

paths show that Australia was at high latitudes through most of the Mesozoic, 

commonly above 60° S, until it migrated northward during separation from Antarctica 

(Schmidt and Clark, 2000; Fig. 2). The change in paleolatitude produced a strong 

monsoonal climate, and correspondingly affected the distribution of flora and fauna in 

eastern Australia (McKellar, 1998; 2004; Turner et al., 2009; de Jersey and McKellar, 

2013). Around the beginning of the Jurassic a change also occurred in Pangea’s 

direction of rotation – from anticlockwise to clockwise. During the Jurassic and 

Cretaceous a sizeable portion of eastern Australia was occupied by the Great Australian 

Superbasin recording sedimentation as a response to tectonics and global eustasy 

(Veevers, 1984).

2.2 Structure and Basin Formation
The Surat Basin is in the eastern portion of the extensive Great Australian 

Superbasin, enveloping an area of 327, 000 km2 in Queensland and New South Wales, 

Australia (Fig. 3). The Surat is time equivalent to the Eromanga and Clarence-Moreton 

basins and depositional continuity occurred across the Nebine and Kumbarilla ridges to 

the west and east, respectively (Power and Devine, 1970; Exon and Senior, 1976; 

Green et al., 1997). The Surat Basin is a shallow platform depression that sits 

unconformably atop the Bowen and Gunnedah basins, and partly rests upon 

Palaeozoic, and Permo-Triassic rocks. The basin axis is defined by the north-south 

trending Mimosa Syncline, roughly corresponding to the Taroom Trough which is the 

Page 5 of 97 Sedimentology



6

thickest part of the Bowen Basin (Exon, 1976; Fielding et al., 1990).

The tectonic mechanisms that produced the Surat Basin are not widely agree 

upon, with three main models being proposed: 1) thermal subsidence (Korsch et al., 

1989; Fielding et al., 1990); 2) dynamic platform tilting (Gallagher et al., 1994; Korsch 

and Totterdell, 2009; Waschbusch et al., 2009); and, 3) intraplate rifting (Fielding, 

1996). The tectonic history remains poorly constrained and both intracratonic (Fielding, 

1996; Yago and Fielding, 1996) and pericratonic basin types have been suggested 

(Veevers et al., 1982; Gallagher, 1990). The basin is relatively undeformed though a 

few important structural features occur (Fig. 3). Of these, the most prominent basement 

structures are the Auburn Arch in the northwest, the Yarraman Block in the northeast, 

and the Texas Block in the southeast. These fault blocks were major sediment sources, 

but became less exposed as time progressed and the basin was filled (Green et al., 

1997). The sedimentary succession is no longer at its maximum burial depths because 

a substantial thickness of sediment has been eroded from the Surat Basin due to mid-

Cretaceous uplift – up to 2500 m in the eastern part (Gallagher et al., 1994; Raza et al., 

2009).

2.3 Sedimentation Cycles and Stratigraphy
According to Exon and Burger (1981), the sedimentary fill of the Surat Basin was 

delivered in six major pulses, culminating in a stratigraphic thickness of over 2500 m. 

The cycles lasted between 10–20 Ma, corresponding to 2nd order global tectonic and 

sedimentation cycles (cf. Wilson, 1968; Burke, 2011). Three cycles occurred in the 

Jurassic, one spanned the Jurassic-Cretaceous boundary, and two took place in the 

Cretaceous. The cycles are informally known as: (1) the Precipice-Evergreen, (2) the 

Hutton-Walloon, (3) the Springbok-Westbourne, (4) the Gubbermunda-Orallo, (5) the 

Mooga-Bungil, and (6) the Wallumbilla cycles. We focus on the first cycle – the 

Precipice-Evergreen cycle.

Stratigraphic correlation across the Surat Basin has garnered substantial effort 

over several decades (Gray, 1968; Power and Devine, 1970; Mollan et al., 1972; Exon, 

1976; Green et al., 1997; Hoffmann et al., 2009; Totterdell et al., 2009; Waiman et al., 

2018; Wang et al., 2019). Yet despite the relatively flat lying nature of the strata, a set of 
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lithostratigraphic terminology that is agreed upon for every interval beyond the local 

area has not been established. The most basic lithostratigraphic scheme proposed by 

McKellar (1998) is preferred herein (Fig. 4). More recently, workers have focused on 

packaging rocks according to their age and genetic relationships using a sequence 

stratigraphic framework (Wells et al., 1994; Hoffmann et al., 2009; Totterdell et al., 

2009; Ziolkowski et al., 2014; Wang et al., 2019). The most recent stratigraphic scheme 

of Wang et al. (2019) illustrates a Precipice Sandstone and Evergreen Formation that 

consist of three 3rd-order sequences corresponding to global sea level fluctuations 

occurring during the Jurassic (Fig.4; Haq et al., 1987).

2.4 Sedimentary Environments
The Precipice Sandstone is generally regarded to represent braided river 

deposits that accumulated in an upland area, and therefore not under the control of sea 

level (Sell et al., 1972; Exon, 1976; Exon and Burger, 1981; Martin, 1981; Green et al., 

1997). However, an updated view is emerging based on sedimentological, ichnological, 

palynological, and microfossil evidence that the Precipice Sandstone was more likely 

deposited in a nearshore and shallow marine setting (Bianchi et al., 2018; Martin et al., 

2018; La Croix et al., 2019b). In this context, eustatic sea level was very important in the 

distribution of depositional environments and the resulting architecture of strata (Wang 

et al., 2019).

Interpretations of the Evergreen Formation generally agree that it was deposited 

by meandering rivers flowing into standing bodies of water, and that a regional 

transgression occurred as deposition ensued (Dickins and Malone, 1973; Exon, 1976; 

Cosgrove and Mogg, 1985; Fielding et al., 1990; Cranfield et al., 1994). However, the 

cause of the regional transgression is not agreed upon. One hypothesis is that the 

Westgrove Ironstone Member represents lacustrine / freshwater deposits (e.g., 

Cranfield et al., 1994; Green et al., 1997), and another links the interval with marine 

incursions (e.g., Mollan et al., 1969; Mollan et al., 1972; Bradshaw and Challinor, 1992; 

La Croix et al., 2019b), and thus it is postulated that sea level had a major influence on 

deposition.
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3. Dataset and Methods
Core, wireline logs (including Formation Micro-images [FMI]), 2D, and 3D seismic 

were utilized as part of this study. The core dataset consisted of ten drill holes that 

intersected a substantial thickness of the Precipice Sandstone and Evergreen 

Formation. These are: Chinchilla 4, Condabri MB9-H, Kenya East GW7, Moonie 31, 

Moonie 34, Reedy Creek MB3-H, Roma 8, Taroom 17, West Wandoan 1, and 

Woleebee Creek GW4. For the most part, core was recovered from the northern portion 

of the Surat Basin, although Kenya East GW7 and Moonie 31 and 34 are situated on 

the eastern flank (Fig. 3). 

Facies analysis was undertaken on the core, consisting of detailed descriptions 

of lithology, physical sedimentology, and ichnology. A subset of 61 samples was 

collected from muddy facies and these samples were analyzed for their palynological 

content (cf. La Croix et al., 2019b). From the core, sets of facies (CF) were defined, 

each representing a distinctive depositional sub-environment.

One hundred and eighty-eight drill holes had sufficient suites of wireline logs and 

were used for wireline log facies interpretation (Fig. 5). The minimum set of logs needed 

for analysis was gamma ray, density, neutron, and sonic logs. Photoelectric factor and 

resistivity logs were secondary but improved the prediction accuracy of facies. Linear 

discriminate analysis was used to simplify the CF into a simple set of wireline log facies 

(WLF) that could be recognized in the absence of core. Using the core dataset an 

artificial neural network was trained to predict WLFs for all 188 drill holes (cf. He et al., 

2019). A series of facies maps was produced using the WLF predictions from across the 

basin. The WLF with the greatest cumulative thickness in each stratigraphic interval was 

used as point data, and this distribution was mapped using the shale content of drill 

holes calculated from gamma ray logs (i.e., Vshale) as a guide.

Palaeocurrent measurements were derived from CMI logs in selected drill holes 

(Condabri MB9-H, West Wandoan 1, and Woleebee Creek GW4). These were merged 

with palaeocurrent data from the outcrop belt along the northern margin of the basin 

based on Bianchi et al. (2018) and Martin (1981). Palaeocurrent interpretations from 

logs were corrected by removing regional structural dip inferred from the shale bedding. 

Dip directions were filtered by removing data with dips less than 8º, to disregard any 
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planar bedding. Outcrop measurements were collected from planar tabular and trough 

cross-bedded sandstones. The combined dataset was used as broad scale palaeoflow 

indicators to support facies mapping interpretations. 

Five hundred and twenty drill holes with gamma ray logs were used for 

stratigraphic correlation across the basin. The main sequence stratigraphic surfaces 

were interpreted in core and then transposed to drill holes using their wireline log motif. 

A network of cross sections facilitated stratigraphic correlation across the basin (cf. 

Wang et al., 2019). A total of 9250 km of 2D seismic data, and three 3D volumes were 

used to support the stratigraphic interpretation. Core was tied to logs, and then synthetic 

seismograms were used to tie logs to seismic and to recognize the main reflectors with 

regional significance. Shot point data was used to convert seismic surfaces to depth, 

especially in regions where well data was sparse. Based on the sequence stratigraphy, 

a series of structure and isopach thickness maps were produced for each major interval.

4. Results
4.1 Sequence Stratigraphy

The Precipice Sandstone and Evergreen Formation consist of three 3rd-order 

depositional sequences, SQ1–SQ3, from base to top (Wang et al., 2019). Each 

sequence is defined by a basal unconformity (J10, SB2, J20, J30), contains a 

transgressive surface (TS1, TS3) and a maximum flooding surface (MFS1, MFS3), and 

is marked by an unconformity at the top. These segment the sequences into a lowstand 

systems tract, transgressive systems tract, and highstand systems tract, respectively 

(Figs. 4 and 6). However, a transgressive surface was only picked from the basal and 

top sequences (SQ1 and SQ3); the second sequence of the three (SQ2) was relatively 

thin and the associated internal stratigraphic subdivisions were difficult to trace across 

most of the basin, possibly due to merging of stratigraphic surfaces. Therefore, TS2 and 

MFS2 surfaces were not correlated.

In core, the lowstand systems tracts consist of sedimentary facies (usually 

channel sandstones) with aggradational stacking patterns. The transgressive systems 

tracts show back stepping facies relationships that are represented by distal over 

proximal relationships. The highstand systems tracts are represented by progradational 

Page 9 of 97 Sedimentology



10

facies stacking patterns with proximal over distal relationships. Facies stacking patterns 

were also inferred using the gamma ray log. Aggradation is represented by generally 

thick, low gamma ray (clean sandstone) motifs. Retrogradation is interpreted from an 

abundance of low gamma ray to high gamma ray up section (i.e., fining-upward) 

packages that are generally 3–5 m thick. Finally, progradational facies stacking was 

inferred from overall high gamma ray to low gamma ray up section (i.e., coarsening-

upward) packages that range in thickness from 3–5 m. The stratigraphy is composed of 

the surfaces: J10 (base-Precipice unconformity), TS1, MFS1, SB2, J20, TS3, MFS3, 

and J30, from base to top. 

Five seismic events were identified from well ties and synthetic seismograms, of 

which three were able to be traced across large sections of the basin: Seismic Event 5, 

Seismic Event 4, and Seismic Event 2, from bottom to top (Fig. 7). Seismic Event 1 and 

3 were localized reflectors that did not always correspond to regionally important 

stratigraphic surfaces. The seismic reflectors were approximations of surfaces observed 

in core. Seismic Event 5, coincides with the J10 / base-Precipice unconformity and 

defined the base of SQ1. Seismic Event 4 correlates with the TS1 surface, demarcating 

the top of the lowstand systems tract in SQ1. Finally, Seismic Event 2 occurs near the 

TS3 surface and corresponds to the base of the transgressive systems tract of SQ3.

At basin-scale, SQ2 is very thin (from approximately 5–15 m thick), as is the 

lowstand systems tract of SQ3 (i.e., between J20 and TS3; from approximately 20–55 m 

thick). These stratigraphic intervals were combined together for mapping. Thus, facies 

maps were produced for the intervals from J10–TS1, TS1–MFS1, MFS1–SB2, SB2–

TS3, and TS3–J30. They represent the LST of SQ1, the TST of SQ1, the HST of SQ1, 

an interval that approximates SQ2, and the combination of the TST and HST of SQ3, 

respectively (Fig. 4).

4.2 Structure and Thickness
Structural elevation maps for the main sequence stratigraphic surfaces are 

displayed in Figure 8. They show that the J10 surface varies between -2365–721 

meters above sea level (masl), with the deepest parts occurring along the axis of the 
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Mimosa Syncline and progressively shallowing towards the southern, eastern, and 

western basin margins, as well as towards the outcrop belt in the north (Fig. 8A). The 

TS1 surface ranges in depth from -2261–800 masl. The structure broadly parallels the 

J10 surface and it becomes co-planar with J10 on the western side of the basin onto the 

Roma Shelf and Wunger Ridge (Fig. 8B). MFS1 varies from -2241–850 masl. The 

surface parallels J10 and TS1, but becomes co-planar with J10/TS1 on the Roma Shelf 

and Wunger Ridge, but further west than TS1 (Fig. 8C). SB2 ranges in depth from -

2225–871 masl. It roughly parallels J10, TS1, and MFS1, and becomes co-planar with 

J10/TS1/MFS1 on the Roma Shelf and Wunger Ridge further east again from MFS1 

(Fig. 8D). The TS3 surface varies from -2131–940 masl, and parallels underlying 

surfaces approximately, with the deepest parts occurring along the axis of the Mimosa 

Syncline (Fig. 8E). Finally, J30, ranges in depth from -2064–983 masl, and parallels the 

underlying surfaces similar to TS3 (Fig. 8F).

Isopach thickness maps for the main stratigraphic intervals are shown in Figure 

9. The interval from J10–TS1 ranges in thickness from 0 m (where J10 and TS1 merge) 

to 151 m along the basin centre. The unit thins to the south, west, and east, but 

continues along the Mimosa Syncline with similar thickness to the basin-centre (Fig. 

9A). Two main areas show the thickest accumulations; one in the southern-central 

portion and the other in the north-central portion, indicating a basement high (or 

decreased sediment accumulation) in the middle of the basin that trends approximately 

east to west. We refer to these two areas as the southern sub-basin (SSB) and northern 

sub-basin (NSB), respectively. The interval from TS1–MFS1 varies from 0–62 m thick. 

Slightly thicker sections occur at the basin centre and towards the east, the unit thins 

towards the southern and western flanks of the basin, and shows thickness continuity 

towards the outcrop belt in the north (Fig. 9B). From MFS1–SB2 the range in thickness 

is from 0–62 m. The thickest sections are within the central and eastern side of the 

basin and thickness is relatively continuous northward near the outcrop belt (Fig. 9C). 

The interval from SB2–TS3 varies from 4–152 m thick. No clear thickness trends are 

observed (Fig.9D). Finally, between TS3–J30 the thickness ranges from 26–119 m. The 

thickness is relatively even across the basin (Fig. 9E).
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4.3 Facies Analysis
Core analysis identified 15 CFs with unique sedimentological and ichnological 

characteristics (Table 1; Fig. 10). These are shown in Woleebee Creek GW4, our type 

well for the Precipice Sandstone and Evergreen Formation (Fig.11). The CFs combine 

into six facies associations representing braidplain, delta plain, subaqueous delta, delta-

influenced shoreface, tidally influenced shoreline, and restricted marine shoal 

depositional systems (He et al., 2019; La Croix et al., 2019). The braidplain association 

primarily consists of coarse-grained cross bedded sandstones, with subordinate gravel 

lags and mud-clast breccia representing migrating bedforms in high gradient 

depositional systems (Fig. 10A). The delta plain association is typified by a complex 

mixture of sandstone, mudstone, and coal facies. Sandstone facies represent 

distributary channels, channel levees, and crevasse splays (Fig. 10B). The mudstones, 

on the other hand, represent t floodplains and interdistributary bays (Fig. 10D). Coal 

deposits are indicative of peat mires (Fig. 10C). The subaqueous delta association is 

characterized by sandstone, heterolithic sandstone and mudstone, as well as mudstone 

facies representing mouthbars (Fig. 10E), the delta front (Fig. 10F), and prodelta (Fig. 

10G). The delta-influenced shoreface association comprises muddy sandstones and 

sandy mudstones with tempestites representing the lower shoreface (Fig. 10H) and 

upper offshore, respectively. The tidally influenced shoreline association comprises 

heterolithic sandstone and mudstone deposits with abundant tidal structures. Finally, 

the restricted marine shoal association displays oolitic (Fig. 10I) and cemented 

ironstone deposits.

The 15 CFs were simplified into 10 WLFs (Table 1; Fig. 6). Not all CFs had 

corresponding WLFs due to a lack of distinctive petrophysical properties. Therefore, 

they could not be distinguished in logs. These were CF1 and CF2. In other cases, CFs 

were grouped together into a single WLF because of their similar log response 

characteristics. These facies could only readily be differentiated in core based on 

sedimentological and ichnological differences. The 10 WLFs consisted of the sandstone 

facies SA, SB, SC, and SD; the mudstone facies MA and MB; the heterolithic facies 

SMA and SMB, and the organic / miscellaneous facies OA and OB. These represent 

braided channel (SA), distributary channel (SB), crevasse splay or mouthbar (SC), and 
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shoreface (SD) sandstones. MA is the WLF manifestation of floodplain mudstone, 

whereas MB represents interdistributary bay and upper offshore depositional 

environments. Delta front facies are represented by SMA and both the prodelta and tidal 

flats are represented by SMB. Finally, OA is the WLF equivalent of coal and OB is 

ironstone. Table 1 compares CFs and WLFs to demonstrate their equivalents. To 

differentiate WLFs with more than one corresponding CF (i.e., SC, MA, and SMB), the 

shape of the log motif was considered in context with the sequence stratigraphy, as well 

as the facies that sit above and below to make the most sensible interpretation.

4.3 Palaeocurrents
Palaeocurrent measurements derived from Martin (1980) and Bianchi et al. 

(2018) show a dominance of southeast and east directions along the western and 

central portion of the outcrop belt (NSB) in the stratigraphic interval from SB1-TS1 (Fig. 

12B). Along the eastern side of the outcrop belt, palaeocurrents are directed towards 

the south and south-southeast. By and large, the spread of palaeocurrent directions are 

confined to a narrow range of up to 45°. Palaeocurrent data from the middle of the 

basin, corresponding to the southern portion of NSB and the northern portion of SSB, 

show directions that are dominantly to the east and south (Fig. 12B).

In the TS1-MFS1 interval palaeoflow indicators shift towards the north in NSB 

(Fig. 13B). On the western side of the outcrop belt they point due north within a narrow 

range. Along the central and eastern side of the basin palaeocurrents point north-

northwest to north-northeast with a wider range, up to approximately 90°. 

Palaeocurrents in the southern part of NSB and SSB, far from the outcrop belt, have 

palaeocurrents that are directed to the northeast, north, and to a lesser extent 

southwest (Fig. 13B).

Only a few palaeocurrent data points exist from the MFS1–SB2 interval, and they 

are from image logs in the basin-centre (Fig. 14B). The palaeocurrents show a 

dominance of west-flowing and south-flowing systems but with a wide dispersal.

Similarly, palaeocurrents were only documented in two locations from the SB2–

TS3 interval (Fig. 15B). In the north they are dominantly directed to the west and 
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northwest, whereas in the south they show a weak NNW-SSE trend with a very large 

spread.

Finally, in the interval from TS3–J30, data from the northern portion of the basin 

show palaeocurrents spread widely in their direction with no clear trend. Data from 

further south is also spread widely, with dominant directions being north, northeast, 

southwest, and southeast (Fig. 16B).

4.4 Distribution of WLFs and Paleo-Depositional Interpretation
4.4.1 J10–TS1

During the LST of SQ1 (J10–TS1), the distribution of WLFs is rather 

monotonous; it is dominated by SA, with only two occurrences of SMA in the northeast 

and east (Fig. 12). Thus, the vast majority of the Surat Basin during J10–TS1 time 

consisted of braided rivers and braid deltas flowing into shallow water bodies (Bianchi et 

al., 2018; La Croix et al., 2019). The orientation of palaeo-currents suggest that these 

fluvial and fluvio-deltaic systems were fed from a source in the northwest and flowed 

towards the east in NSB (Fig. 12B; Martin, 1981; Bianchi et al., 2018). It remains 

uncertain what the source area was for SSB, but palaeoflow directions near the divide 

between the two sub-basins indicate that the SSB system flowed towards the east (Fig. 

9A).

4.4.2 TS1–MFS1
In the TST of SQ1 (TS1–MFS1), SB is the dominant WLF in the northwestern 

and southeastern part of basin, whereas MA, SMA, and SMB are the prominent facies 

in the central portion. The edges of the basin were occupied by lower delta plain 

environments, with rivers interpreted to have been flowing north towards the present-

day outcrop belt (i.e., northern portion of NSB), and towards the basin-centre forming 

the delta front and prodeltas of these systems in the southern NSB and SSB (Fig. 13A, 

B). Younger deposits cut through older strata with complex cross-cutting relationships 

interpreted to have been derived from allogenic shifts in environments. These large-

scale deltas extended several tens of kilometers into the basin from the northwest. 

However, on the eastern margin of the basin, delta lobes do not show clear geometries 
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in seismic data, and thus are not interpreted to have extended very far from their 

provenance areas (i.e., from the Auburn Arch and Yarraman Block). From the south, 

delta systems had much greater axial extents than on the southeastern and 

southwestern sides of the basin. Palaeocurrent data from the northern portion of the 

basin, within the outcrop belt, suggest that fluvio–deltaic systems were generally flowing 

from south to north and into shallow marine water bodies (Fig. 13B). Minor shoreface 

environments were distributed in the northeastern part of basin and tidal settings were 

distributed in the south.

4.4.3 MFS1–SB2
In the HST of SQ1 (TS1-SB2), Facies SB is the dominant WLF and SC is 

subordinate along the western, eastern, and southern portion of the study area (Fig. 

14). A wider fairway (than the underlying interval TS1–MFS1) along the basin centre 

mostly comprises SMB, with a subordinate proportion of drill holes consisting of SMA 

and MA. From this distribution, we interpret that the main sedimentary environment was 

lower delta plain along the margins, transitioning into delta front and prodelta deposits 

towards the basin-centre and the outcrop belt in the north (Fig. 14B). Only the 

northwestern, eastern, and southeastern part of basin contained isolated delta systems, 

whereas in the rest of the basin delta systems were connected by long coastlines fed by 

many rivers. This was coupled with enhanced marine influence and an overall increase 

in water depths based on coastal and marine palynomorphs and marine trace fossils 

(La Croix et al., 2019b). West Wandoan 1 and Woleebee Creek GW4 are interpreted to 

be located near the locus of deposition, representing the “basin centre”; the two sub-

basins were merged at this stratigraphic level.

4.4.4 SB2–TS3
The distribution of WLFs in the SB2–TS3 interval predominantly consists of SB 

and SC along the western, eastern, and southern portions of the study area (Fig. 15). In 

contrast, along the axis of the Mimosa Syncline at the basin-centre, drill holes mostly 

comprise SMA, SMB, and MA. Thus, the interval was characterized by lower delta plain 

environments with abundant distributary channels rimming the study area. Large fluvio-
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deltaic systems flowing from the northwest and southeast prograded towards the central 

basin. We interpret that the sediment input from the southeast had increased relatively 

to older stratigraphic intervals based on palaeocurrent data (Fig. 15B). However, fluvio-

deltaic systems with an eastern provenance had much narrower delta plains compared 

to systems located on the western margins of the basin.

4.4.5 TS3– SB4
Near the top of the Evergreen Formation (TS3–SB4), the main WLFs are SB and 

SC along the western, southern, and eastern margins of the study area (Fig. 16). A wide 

fairway that extends from south to north into the outcrop belt dominantly comprises 

SMB with subordinate SMA. We interpret this to indicate that the entire basin was 

increasingly flooded by marine water, especially in the central and the northeastern 

parts of basin. Sediment was mainly derived from a western and southeastern 

provenance. Through time, the north and northeastern part of the basin were flooded 

which became the dominant areas that formed ooid shoals (Fig. 17). The maps of 

(oolitic) ironstone shows that both the number (Fig. 17A) and cumulative thickness (Fig. 

17B) of these ironstone layers is greatest along the basin centre, as well as to the north 

and east near the outcrop belt. Shoreface mainly developed in the northeast, facing the 

open sea, whereas tidal environments were mainly restricted to a narrow fairway in the 

south.

5. Discussion
Given the current relatively simplistic understanding of palaeogeography in 

eastern Australia, our maps are useful for showing the evolution of depositional 

environments and placing Early Jurassic strata from the Surat Basin into a regional 

context. The distribution and orientation of wireline log facies allow us to make improved 

interpretations about sediment source areas, depositional sub-basins, fluctuations in 

relative sea level that controlled deposition, and to make inferences about the tectonic 

setting of the sedimentary basin. However, first, a summary of the depositional evolution 

is necessary.
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5.1 Summary of the Evolution of Paleodepositional Environments
The Early Jurassic land surface consisted of elevated basement blocks in the 

northwest (Auburn Arch), northeast (Yarraman Block), and southeast (Texas Block)(Fig. 

3). These exposed basement blocks provided the main clastic input into the Surat Basin 

at the time. The Auburn Arch was composed of siliceous sedimentary and volcanic 

rocks; the Yarraman Block consisted of granite and gneiss; and the Texas Block was 

mainly composed of indurated fine-grained sediments (Green et al., 1997). 

Deposition of the Precipice Sandstone commenced with a large fluvial and fluvio-

deltaic network developed along a corrugated and irregular topography incised into the 

Palaeozoic–Triassic Tasmanides Fold Belt. Braided rivers and braid deltas of the 

Precipice Sandstone progressively filled topographic lows along the unconformity 

surface with coarse grained sandstones and minor siltstone and mudstone deposits 

(J10–TS1; Fig. 12A). However, the Precipice Sandstone was restricted in lateral extent 

and onlapped the ridges that defined the basin to the west, south, and east (Fig. 9A; 

Wang et al., 2019). Furthermore, there appears to have been a remnant high that 

separated a depositional sub-basin in the south (SSB) from a northern sub-basin (NSB).

The dramatic shift in distribution of sedimentary environments above the 

Precipice Sandstone (i.e., TS1 surface and above), coincident with a eustatic rise in sea 

level (Haq et al., 1987) were taken as evidence of relative sea level control on 

deposition by Wang et al., (2019). The base of the Evergreen Formation was 

characterized by a shift from braided systems to lower energy fluvio-deltaic deposition 

(TS1–MFS1; Figs. 6, 11, 12A, 13A). Deposition expanded across the basin as the 

underlying topography was filled with sediment and the two depositional sub-basins 

merged into one. Topographic highs on the western basin margin (Wunger Ridge and 

Roma Shelf), in the south of the basin, and on the eastern flanks (Moonie-Goondiwindi 

Fault Systems) were a source of sediment that was shed towards the basin centre 

along the axis of the Mimosa Syncline or towards the north via distributary channels 

feeding delta lobes (c.f. Bianchi et al., 2018). Intervening areas between active delta 

lobes were characterized by interdistributary bays, tidal flats, and shorefaces. 

Ichnological and palynological data suggest that the basin centre was brackish to 

marine (Martin et al., 2018; La Croix et al., 2019b). Although there may have been 
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small-scale rises and falls in relative sea level, overall transgression continued up 

section (i.e., MFS1–SB2 and SB2–TS3; Figs. 14 and 15).

Maximum relative sea level was achieved by the TS3–SB4 interval (Fig. 16), 

illustrated by the presence of oolitic ironstones with a widespread distribution (Fig. 17). 

By this point in time, most of the underlying Tasmanides structure was buried beneath a 

thick pile of sediment. In Europe, ironstones record high sea level conditions (Hallam, 

1975), and in the Surat Basin it has been suggested that they relate to the Toarcian 

Anoxic Event (Ziolkowski et al., 2014). Debate remains over the lacustrine to shallow 

marine origin of the oolites (Mollan et al., 1972; Bradshaw and Challinor, 1992; 

Cranfield et al., 1994; Green et al., 1997), but intervening strata with marine trace fossils 

such as Asterosoma, Rhizocorallim, Scolicia, and Teichichnus suggests that at least 

periodically the water was both oxygenated and marine to brackish (La Croix et al., 

2019b). Additional evidence in support of the brackish water conditions is derived from 

the presence of acritarchs, dinocysts (Evans, 1962; Reiser and Williams, 1969; La Croix 

et al., 2019b), and shells of marginal to shallow marine affinity (Mollan et al., 1972). 

Ironstone deposition was widespread, extending to the Nambour and Clarence-Moreton 

basins (Bradshaw and Yeung, 1990). Finally, erosion of the top of the Evergreen 

Formation (i.e., J30 surface) separated muddy fluvial-deltaic sediment from the primarily 

thick and sandy deposits of the Hutton Sandstone.

5.2 Sediment Source Areas and Depositional Sub-Basins
Isopach thickness maps of the J10–TS1 interval show that there is a region in the 

north with thicknesses that exceed 120 m, separated by a region with thicknesses of 

around 50 m, from an area to the south with thicknesses of around 100 m. This suggest 

that early deposition of the Precipice Sandstone may have been compartmentalized into 

two sub-basins; one sub-basin in the north centered around Woleebee Creek GW4 

(NSB; Fig. 9A), with the other located in the south to the west of the Moonie Oil Field 

(SSB; Fig. 9A) separated by a structural high in between. The isopach thickness 

becomes more evenly distributed up-section, from the TS1–MFS1 through to the TS3–

J30 intervals. This supports the interpretation that the basin was progressively filled, 

and that the depositional sub-basins eventually (post TS1 time) merged into a single 
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basin, once the sedimentary pile was thick enough to cover the ridge that separated the 

two. 

5.3 Marine Connection to Eastern Australia
The Early Jurassic sediments of eastern Australia are typically considered to be 

dominantly non-marine. Though, the Helby beds in the Carpentaria Basin and the oolitic 

ironstone layers in the Nambour, Surat, and Clarence-Moreton are considered to be 

indicators of periodic marine incursion into the basins by some workers (e.g., Exon, 

1976; Bradshaw and Yeung, 1990; Green et al., 1997). The dominance of ‘continental 

style’ deposition has been used as evidence that Australia was landlocked deep within 

eastern Gondwana. This is partially a function of the lack of data from offshore 

Queensland; no drill holes have intersected significant Jurassic sections, and most 

interpretations are built from seismic data (Pinchin and Hudspeth, 1975; Taylor and 

Falvey, 1977; Mutter and Karner, 1980). However, facies distribution patterns suggest 

that the depositional systems in the Early Jurassic ultimately flowed toward the east and 

northeast (Figs. 12–16). Further support for this is derived from the ironstone maps that 

show increasing thickness and number of ironstone bands towards the north and east, 

respectively (Fig. 17), suggesting that marine influence was greater in those directions. 

Recent work by Vink et al. (in review) supports this interpretation, showing that the 

water in the Precipice Sandstone aquifer flowing towards the Clarence-Moreton Basin in 

the east. This implies continuity of a transmissive aquifer equivalent to the Precipice 

Sandstone (i.e., the Ripley Road Sandstone) that is connected through a corridor, and 

which ultimately discharges at Toowoomba, Queensland – east of the Surat Basin. 

Various outcrop exposures of the Gatton Sandstone (partially equivalent to the 

Precipice Sandstone) within that corridor show storm reworking of these deposits (Fig. 

18).

Jones and Veevers (1983) proposed depositional continuity across a large region 

of eastern Australia from 200-140 Ma; in particular, they interpreted that the Eromanga, 

Carpentaria, Surat, and Papuan basins may have been one continuous depositional 

entity due to similar ages and stratal relationships within the basins. Palynological 

evidence from the Razorback beds  (Playford and Cornelius, 1967) support this 
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hypothesis because of their similarity to the Precipice Sandstone. Based on our results 

we interpret a narrow passage through the central part of the Surat Basin, between 

tectonically controlled uplifts of the New England Fold belt (Rosenbaum, 2018), as the 

most obvious potential marine connection fairway between the Surat and adjacent 

Clarence-Moreton Basin to the east (see Figs. 13A, 14A, 15A, 16A at ca. 27° latitude 

present day). The associated deposits may have resembled strait margin sediments 

due to bi-directional currents and tidal current amplification (Longhitano et al., 2014). 

However, the paleogeographic depositional extent in the north is poorly constrained 

because strata shallow towards ground level and a substantial thickness of section has 

been removed by erosion; nonetheless we interpret that there was also a marine 

connection to the north and northeast. Future work should focus on stratal relationships 

with adjacent basins including the Nambour, Clarence-Moreton, and Mulgildie basins, 

and to look for evidence of previous connection to terranes that now sit at great 

distances from Australia such as parts of Zealandia. 

5.4 Basin Tectonics
While the type of Mesozoic basins represented in eastern Australia have been 

debated (e.g., Veevers et al., 1982; Fielding et al., 1990; Gallagher, 1990; Yago and 

Fielding, 1996; Babaahmadi et al., 2019), our analysis and results supports the 

hypothesis that the Surat Basin sediments were deposited landward of a large 

subduction zone, and thus the basin represents a retroarc foreland configuration. As 

pointed out by Jones and Veevers (1983), the co-occurrence of labile sediments shed 

into the basin from the east, and coals through much of the stratigraphic section (i.e., 

the Middle–Late Jurassic Walloon Coal Measures) is best explained by persistent 

subsidence, high water tables, rapid sedimentation, and an orogen to the east. 

Additional morphological evidence for a foreland basin is the asymmetric, long, and 

narrow geometry, with a steeper dipping eastern margin than western margin. Although 

no syn-depositional reverse faults have been documented, the base-Precipice 

unconformity may be evidence for tectonically-driven basin formation. Jones and 

Veevers (1983) inferred that the location of the plate boundary was approximately 200 

km east of its present location offshore Queensland, parallel to the east coast of 
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Australia and extended north to Papua New Guinea and south past Tasmania to the 

Transantarctic Mountain terrane. North of 30°S present latitude the plate boundary was 

primarily convergent and was likely the result of ridge push from growth of the Pacific 

Plate (Bartonlini and Larson, 2001; Seton et al., 2012; Babaahmadi et al., 2019). The 

sedimentological, stratigraphic, and facies distribution pattern in the context of marine 

influence support this interpretation. Volcanic detritus in the Surat and Clarence-

Moreton basins also support a convergent boundary to the east of present day 

Queensland (Korsch and Harrington, 1981).

6. Conclusions
The combined results of core, wireline log, as well as 2D and 3D seismic to 

produce facies maps has allowed some important conclusions to be made regarding the 

evolution of depositional environments and paleogeography for the Early Jurassic in the 

Surat Basin of eastern Australia:

1) The Precipice Sandstone and Evergreen Formation record three 3rd-order 

depositional sequences that were controlled, in part, by global sea level cycles.

2) Deposition was manifest in braidplain systems for the Precipice Sandstone, and 

fluvio-deltaic depositional systems for the Evergreen Formation. Near the top of 

the Evergreen Formation, within the Westgrove Ironstone Member, brackish to 

shallow-marine conditions were fully established within large portions of the 

basin.

3) Marine influence became increasingly more prominent up section, though it 

occurred in discrete pulses derived from a combination of autogenic (i.e., lobe 

switching, channel avulsion) and allogenic (base level fluctuation due to tectonics 

or eustasy) control. The most plausible connection to the marine occurred 

through a narrow passage across the Kumbarilla Ridge to the Clarence-Moreton 

Basin and / or northwards of the outcrop belt connecting the Surat Basin to the 

Carpentaria and Papuan basins.

4) Initiation of sedimentation into the Surat Basin occurred in two distinct 

depositional sub-basins – one in the north central region and one further south. 

As sedimentation continued these sub-basins merged.
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5) In the early stages of basin fill, the main sediment provenance was the Wunger 

Ridge and Roma Shelf on the western basin margin. The Moonie-Goondiwindi 

Fault System on the east was a secondary sediment source. During later stages, 

sediment input from the southeast increased at the same time as the 

northeastern basin margin was being transgressed. This resulted in overall 

decreasing importance of the northeast as a source of sediment input.

6) Sedimentological, stratigraphic, and morphological evidence supports the 

interpretation that the Surat Basin was a foreland basin, with the associated 

subduction zone occurring to the east of the present day Queensland coast. This 

proximity to subduction provided the mechanism for the creation of 

accommodation space.

The results taken together illustrate a picture of eastern Gondwana that challenges a 

commonly held view that it was locked in an intracratonic setting, far from the influence 

of eustasy. Rather, we suggest that eastern Australia was much more dynamic than 

previously considered and contained a complex mixture of sedimentary environments 

and paleogeographic orientations such that there was an interplay between fluvial, 

deltaic, and shallow marine depositional systems. Our series of facies maps provide a 

foundation upon which future workers can examine the stratigraphic relationships 

between the Surat Basin and other eastern Australian basins to improve our 

understanding of the evolution of Gondwana during the Jurassic. Finally, the dataset 

and results can be used by geoscientists working in other basins globally as an 

analogue for understanding the complex interplay of paralic depositional systems in 

data poor areas. 
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9. Figure and Table Captions

Table 1 – Core facies and wireline log facies classification of the Precipice Sandstone 

and Evergreen Formation in the Surat Basin. Data from He et al. (2019) and La Croix et 

al. (2019b).

Figure 1 – Broad-scale paleo-depositional environment maps for the Early Jurassic 

from Yeung and Bradshaw (1990). (A) “Jurassic 1” (earliest Jurassic map). (B) “Jurassic 

2”. (C) “Jurassic 3”.

Figure 2 – The position of Australia within Gondwana at 201.6 Ma (Paleoglobe for the 

Early Jurassic, 201.6 million years ago, by C.R. Scotese, PALEOMAP PROJECT).

Figure 3 – The geographic location (inset) and major structural elements of the Surat 

Basin in eastern Australia. Black dots indicate the location of cored drill holes that were 

analyzed in this study. The red dot indicates the location of Woleebee Creek GW4 – our 

type well for the Precipice–Evergreen interval. The grey dashed box shows the area 

displayed in the maps from Figures 5, 8, 9, and 11–16. The location of the seismic 

section from Figure 7 is shown in red.

Figure 4 – Stratigraphic nomenclature of the Lower Jurassic in the Surat Basin. The 

lithostratigraphy is after McKellar (1998), the sequence stratigraphy is per our study, 

and the global sea level curves are from Haq et al. (1987). The red line represents the 

long term eustatic curve, while the blue line indicates the short term changes in eustacy. 

The sequence stratigraphy consists of three 3rd order sequences (SQ1–SQ3), and is 

subdivided into systems tracts by the sequence boundaries J10, SB2, J20, and J30, the 

transgressive surfaces TS1 and TS3, and the maximum flooding surfaces MFS1 and 

MFS3. Notably, SQ2 was not subdivided into systems tracts due to its very thin 

preservation across the basin; SQ2 represents a relatively minor stratal package and no 

systems tracts were defined within it.
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Figure 5 – Well locations for wireline log facies (WLF) predictions using neural networks 

(circles), and the cored drill holes that were used to train the neural networks (squares). 

The colour of the circles represents the number of different wireline logs that each well 

had available to use in the WLF predictions. Generally, the greater the number of logs, 

the better the WLF prediction accuracy.

Figure 6 – North-south (A–A’) and east-west (B–B’, C–C’, D–D’) oriented wireline log 

cross sections showing the correlation of sequence stratigraphic surfaces across the 

basin. The cross section uses the MFS3 surface as the datum. Wireline log facies from 

core and predicted from neural networks are shown next to each well. Inset map shows 

the location of cross sections. The dashed grey box indicates the location of maps 

relative to the basin.

Figure 7 – An east-west trending seismic section tied to Woleebee Creek GW4 showing 

the three main reflectors within the Precipice–Evergreen succession that have 

significant lateral continuity across the north-central part of the Surat Basin. Seismic 

Event 5 broadly corresponds to the J10 surface (sub-Surat unconformity), Seismic 

Event 4 approximates the top of the Precipice Sandstone (i.e., TS1), and Seismic Event 

2 is roughly equivalent to the top of the Boxvale Sandstone (i.e., TS3). The seismic 

section clearly shows the onlap of the Precipice Sandstone (Lowstand Systems Tract 1) 

against the J10 unconformity. The seismic section is displayed in zero phase with 

SEGY conventional polarity. Truncation and onlap seismic reflector termination styles 

are indicated, along with interpreted faults.

Figure 8 – Structural elevation maps for the sequence stratigraphic surfaces from the 

Precipice Sandstone and Evergreen Formation across the Surat Basin: (A) J10 / base-

Precipice unconformity; (B) TS1; (C) MFS1; (D) SB2; (E) TS3; (F) J30. White circles 

show the locations of drill holes used to constrain the stratigraphy. The contour interval 

is 200 m. See Figure 2 for location of maps.
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Figure 9 – Thickness maps for the main intervals analyzed for the Precipice Sandstone 

and Evergreen Formation in the Surat Basin: (A) J10–TS1; (B) TS1–MFS1; (C) MFS1–

SB2; (D) SB2–TS3; (E) TS3–J30. The Northern and Southern sub-basins are 

correspondingly labelled. White circles show the locations of drill holes used to 

constrain the stratigraphy. The contour interval is 20 m. See Figure 2 for location of 

maps.

Figure 10 – (A) Core Facies 4 from Woleebee Creek GW4, 1518.50 m; (B) Core Facies 

5 from Woleebee Creek GW, 1297.25 m; (C) Core Facies 7 from Chinchilla 4, 1107.40 

m; (D) Core Facies 8 from Chinchilla 4,1003.75 m; (E) Core Facies 9 from Taroom 17, 

336.75 m; (F) Core Facies 10 from Chinchilla 4; 1026.45 m; (G) Core Facies 11 from 

Roma 8, 1006.25 m; (H) Core Facies 12 from Kenya East, 1013.40 m; (I) Core Facies 

15 from Chinchilla 4, 1036. 87 m. (J) The acritarch Multiplicisphaeridium spp. from 

Woleebee Creek GW4, 1336.70 m. (K) Undifferentiated dinocyst from West Wandoan 1, 

1011.86 m. cf = combind flow ripples, cr = current ripples, syn = synaeresis cracks, tm = 

tempestites, txb = trough cross beds, wr = wave ripples, wu = wavy-undulatory 

lamination, Lo = Lockeia, Pa = Palaeophycus, Pl = Planolites, Ro = rootlets, Sc = 

Scolicia, Te = Teichichnus.

Figure 11 – Detailed core description of the Precipice Sandstone and Evergreen 

Formation in Woleebee Creek GW4 from 1573.60 m to 1285.20 m. The descriptions 

include physical sedimentary structures and accessories, trace fossils and bioturbation 

intensity, and the sequence stratigraphic sub-division of the core. Core facies (CF) are 

indicated along with their corresponding wireline logs facies (WLF) sub-divisions.

Figure 12 – (A) Map showing the distribution of depositional environments interpreted 

from core and wireline logs for the J10–TS1 interval. (B) Palaeocurrent directions for the 

interval from Martin (1980), Bianchi et al. (2018) and this study.
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Figure 13 – (A) Map showing the distribution of depositional environments interpreted 

from core and wireline logs for the TS1–MF1 interval. (B) Palaeocurrent directions for 

the interval from Bianchi et al. (2018) and this study.

Figure 14 – (A) Map showing the distribution of depositional environments interpreted 

from core and wireline logs for the MFS1–SB2 interval. (B) Palaeocurrent directions for 

the interval from this study.

Figure 15 – Map showing the distribution of depositional environments interpreted from 

core and wireline logs for the SB2–TS3 interval. (B) Palaeocurrent directions for the 

interval from this study.

Figure 16 – Map showing the distribution of depositional environments interpreted from 

core and wireline logs for the TS3–J30 interval. (B) Palaeocurrent directions for the 

interval from this study.

Figure 17 – (A) Map showing the number of individual ironstone layers in drill holes. (B) 

Map displaying the cumulative thickness of ironstone in drill holes. Data were derived 

from core and wireline logs.

Figure 18 – Swaley cross-beds (i.e., tempestites) from the Gatton Sandstone – a partial 

equivalent in the Clarence-Moreton Basin to the Precipice Sandstone in the Surat 

Basin. Location of outcrop is: 27°25.045’ S, 152°20.392’ E.
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Wireline Log Facies 
(WLF)

Gamma Ray Log 
Motif

Core Facies 
(CF) Description Composition Thickness 

(m) Depositional Environment

- - 1 Interbedded conglomerate and sandstone >30% granules and coarser 0.25–1.2
(mean: 0.83) Lag deposit or channel base

- - 2 Mud-clast breccia >30% granules and coarser 0.17–0.8
(mean: 0.41)

Channel base or channel bank 
collapse

SA Smooth cylindrical 
shape 3 Coarse-grained planar-tabular cross-bedded sandstone >90% sand

0.2–77.2
(mean: 
12.59)

Fluvial channel

SB Smooth concave bell 
shape 4 Fine-grained planar-tabular grading into current ripple laminated 

sandstone >90% sand 0.35–18.7
(mean: 4.54) Distributary channel

Smooth concave 
funnel shape 9 Wave- to combined-flow ripple laminated sandstone >90% sand 0.2–10.33

(mean: 2.26) Mouthbar

SC Erratic concave funnel 
shape 5 Structureless to planar-parallel laminated sandstone >90% sand 0.18–4.85

(mean: 1.30) Channel levee or splay

SD
Erratic concave funnel 

shape 12 Bioturbated muddy sandstone with wave-ripple lamination and HCS 
interbeds >90% sand 1.30–7.12

(mean: 3.29 Lower shoreface

MA Smooth line shape 6 Structureless, carbonaceous siltstone and mudstone >90% silt and clay 0.12–7.60
(mean: 1.15) Floodplain

Erratic line shape 8 Bioturbated muddy sandstone and sandy mudstone >90% silt and clay 0.23–1.90
(mean: 0.80) Interdistributary Bay

MB Smooth line shape 13 Bioturbated sandy mudstone with wave-ripple to HCS interbeds >90% silt and clay 0.53–4.13
(mean: 2.33) Upper offshore

SMA
Erratic concave egg 

shape 10 Sand-dominated to sub-equal sandy and muddy heterolithics 
(sandstone and mudstone) 90%>sand>30% 0.25–5.70

(mean: 2.08) Delta front

Erratic line shape 11 Mud-dominated heterolithics (sandstone and mudstone) 30%>sand>10% 0.16–10.6
(mean: 1.49) Prodelta

SMB Erratic line shape 14 Mixed sandy and muddy heterolithics with tide-generated structures 
(sandstone and mudstone) 90%>sand>10% 0.11-5.50

(mean: 1.54 Tidal flats

OA Smooth convex egg 
shape 7 Coal Predominantly organic macerals 0.05-0.91

(mean: 0.22 Peat mire

OB Smooth convex egg 
shape 15 Ironstone Ironstone ooids (sand sized) or 

cemented
0.05-1.35

(mean: 0.44 Restricted marine shoals
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