1,267 research outputs found

    A Klein Gordon Particle Captured by Embedded Curves

    Full text link
    In the present work, a Klein Gordon particle with singular interactions supported on embedded curves on Riemannian manifolds is discussed from a more direct and physical perspective, via the heat kernel approach. It is shown that the renormalized problem is well-defined, and the ground state energy is unique and finite. The renormalization group invariance of the model is discussed, and it is observed that the model is asymptotically free.Comment: Published version, 13 pages, no figures. arXiv admin note: substantial text overlap with arXiv:1202.356

    On the spectrum of a bent chain graph

    Full text link
    We study Schr\"odinger operators on an infinite quantum graph of a chain form which consists of identical rings connected at the touching points by δ\delta-couplings with a parameter αR\alpha\in\R. If the graph is "straight", i.e. periodic with respect to ring shifts, its Hamiltonian has a band spectrum with all the gaps open whenever α0\alpha\ne 0. We consider a "bending" deformation of the chain consisting of changing one position at a single ring and show that it gives rise to eigenvalues in the open spectral gaps. We analyze dependence of these eigenvalues on the coupling α\alpha and the "bending angle" as well as resonances of the system coming from the bending. We also discuss the behaviour of the eigenvalues and resonances at the edges of the spectral bands.Comment: LaTeX, 23 pages with 7 figures; minor changes, references added; to appear in J. Phys. A: Math. Theo

    Schroedinger operators with singular interactions: a model of tunneling resonances

    Full text link
    We discuss a generalized Schr\"odinger operator in L2(Rd),d=2,3L^2(\mathbb{R}^d), d=2,3, with an attractive singular interaction supported by a (d1)(d-1)-dimensional hyperplane and a finite family of points. It can be regarded as a model of a leaky quantum wire and a family of quantum dots if d=2d=2, or surface waves in presence of a finite number of impurities if d=3d=3. We analyze the discrete spectrum, and furthermore, we show that the resonance problem in this setting can be explicitly solved; by Birman-Schwinger method it is cast into a form similar to the Friedrichs model.Comment: LaTeX2e, 34 page

    Sufficient conditions for the anti-Zeno effect

    Full text link
    The ideal anti-Zeno effect means that a perpetual observation leads to an immediate disappearance of the unstable system. We present a straightforward way to derive sufficient conditions under which such a situation occurs expressed in terms of the decaying states and spectral properties of the Hamiltonian. They show, in particular, that the gap between Zeno and anti-Zeno effects is in fact very narrow.Comment: LatEx2e, 9 pages; a revised text, to appear in J. Phys. A: Math. Ge

    Exponential splitting of bound states in a waveguide with a pair of distant windows

    Full text link
    We consider Laplacian in a straight planar strip with Dirichlet boundary which has two Neumann ``windows'' of the same length the centers of which are 2l2l apart, and study the asymptotic behaviour of the discrete spectrum as ll\to\infty. It is shown that there are pairs of eigenvalues around each isolated eigenvalue of a single-window strip and their distances vanish exponentially in the limit ll\to\infty. We derive an asymptotic expansion also in the case where a single window gives rise to a threshold resonance which the presence of the other window turns into a single isolated eigenvalue

    A general approximation of quantum graph vertex couplings by scaled Schroedinger operators on thin branched manifolds

    Full text link
    We demonstrate that any self-adjoint coupling in a quantum graph vertex can be approximated by a family of magnetic Schroedinger operators on a tubular network built over the graph. If such a manifold has a boundary, Neumann conditions are imposed at it. The procedure involves a local change of graph topology in the vicinity of the vertex; the approximation scheme constructed on the graph is subsequently `lifted' to the manifold. For the corresponding operator a norm-resolvent convergence is proved, with the natural identification map, as the tube diameters tend to zero.Comment: 19 pages, one figure; introduction amended and some references added, to appear in CM

    Spectral and localization properties of the Dirichlet wave guide with two concentric Neumann discs

    Full text link
    Bound states of the Hamiltonian describing a quantum particle living on three dimensional straight strip of width dd are investigated. We impose the Neumann boundary condition on the two concentric windows of the radii aa and b b located on the opposite walls and the Dirichlet boundary condition on the remaining part of the boundary of the strip. We prove that such a system exhibits discrete eigenvalues below the essential spectrum for any a,b>0a,b>0. When aa and bb tend to the infinity, the asymptotic of the eigenvalue is derived. A comparative analysis with the one-window case reveals that due to the additional possibility of the regulating energy spectrum the anticrossing structure builds up as a function of the inner radius with its sharpness increasing for the larger outer radius. Mathematical and physical interpretation of the obtained results is presented; namely, it is derived that the anticrossings are accompanied by the drastic changes of the wave function localization. Parallels are drawn to the other structures exhibiting similar phenomena; in particular, it is proved that, contrary to the two-dimensional geometry, at the critical Neumann radii true bound states exist.Comment: 25 pages, 7 figure

    Scattering solutions in a network of thin fibers: small diameter asymptotics

    Full text link
    Small diameter asymptotics is obtained for scattering solutions in a network of thin fibers. The asymptotics is expressed in terms of solutions of related problems on the limiting quantum graph. We calculate the Lagrangian gluing conditions at vertices for the problems on the limiting graph. If the frequency of the incident wave is above the bottom of the absolutely continuous spectrum, the gluing conditions are formulated in terms of the scattering data for each individual junction of the network

    Localization of nonlinear excitations in curved waveguides

    Full text link
    Motivated by the example of a curved waveguide embedded in a photonic crystal, we examine the effects of geometry in a ``quantum channel'' of parabolic form. We study the linear case and derive exact as well as approximate expressions for the eigenvalues and eigenfunctions of the linear problem. We then proceed to the nonlinear setting and its stationary states in a number of limiting cases that allow for analytical treatment. The results of our analysis are used as initial conditions in direct numerical simulations of the nonlinear problem and localized excitations are found to persist, as well as to have interesting relaxational dynamics. Analogies of the present problem in contexts related to atomic physics and particularly to Bose-Einstein condensation are discussed.Comment: 14 pages, 4 figure

    Experimental and numerical investigation of the reflection coefficient and the distributions of Wigner's reaction matrix for irregular graphs with absorption

    Full text link
    We present the results of experimental and numerical study of the distribution of the reflection coefficient P(R) and the distributions of the imaginary P(v) and the real P(u) parts of the Wigner's reaction K matrix for irregular fully connected hexagon networks (graphs) in the presence of strong absorption. In the experiment we used microwave networks, which were built of coaxial cables and attenuators connected by joints. In the numerical calculations experimental networks were described by quantum fully connected hexagon graphs. The presence of absorption introduced by attenuators was modelled by optical potentials. The distribution of the reflection coefficient P(R) and the distributions of the reaction K matrix were obtained from the measurements and numerical calculations of the scattering matrix S of the networks and graphs, respectively. We show that the experimental and numerical results are in good agreement with the exact analytic ones obtained within the framework of random matrix theory (RMT).Comment: 15 pages, 8 figure
    corecore