3,301 research outputs found

    Scattering by local deformations of a straight leaky wire

    Full text link
    We consider a model of a leaky quantum wire with the Hamiltonian Δαδ(xΓ)-\Delta -\alpha \delta(x-\Gamma) in L2(R2)L^2(\R^2), where Γ\Gamma is a compact deformation of a straight line. The existence of wave operators is proven and the S-matrix is found for the negative part of the spectrum. Moreover, we conjecture that the scattering at negative energies becomes asymptotically purely one-dimensional, being determined by the local geometry in the leading order, if Γ\Gamma is a smooth curve and α\alpha \to\infty.Comment: Latex2e, 15 page

    Asymptotic estimates for bound states in quantum waveguides coupled laterally through a narrow window

    Full text link
    Consider the Laplacian in a straight planar strip of width d\,d\,, with the Neumann boundary condition at a segment of length 2a\,2a\, of one of the boundaries, and Dirichlet otherwise. For small enough a\,a\, this operator has a single eigenvalue ϵ(a)\,\epsilon(a)\,; we show that there are positive c1,c2\,c_1,c_2\, such that c1a4ϵ(a)(π/d)2c2a4\,-c_1 a^4 \le \epsilon(a)- \left(\pi/ d\right)^2 \le -c_2 a^4\,. An analogous conclusion holds for a pair of Dirichlet strips, of generally different widths, with a window of length 2a\,2a\, in the common boundary.Comment: LaTeX file, 12 pages, no figure

    Quantum waveguides with a lateral semitransparent barrier: spectral and scattering properties

    Full text link
    We consider a quantum particle in a waveguide which consists of an infinite straight Dirichlet strip divided by a thin semitransparent barrier on a line parallel to the walls which is modeled by a δ\delta potential. We show that if the coupling strength of the latter is modified locally, i.e. it reaches the same asymptotic value in both directions along the line, there is always a bound state below the bottom of the essential spectrum provided the effective coupling function is attractive in the mean. The eigenvalues and eigenfunctions, as well as the scattering matrix for energies above the threshold, are found numerically by the mode-matching technique. In particular, we discuss the rate at which the ground-state energy emerges from the continuum and properties of the nodal lines. Finally, we investigate a system with a modified geometry: an infinite cylindrical surface threaded by a homogeneous magnetic field parallel to the cylinder axis. The motion on the cylinder is again constrained by a semitransparent barrier imposed on a ``seam'' parallel to the axis.Comment: a LaTeX source file with 12 figures (11 of them eps); to appear in J. Phys. A: Math. Gen. Figures 3, 5, 8, 9, 11 are given at 300 dpi; higher resolution originals are available from the author

    A single-mode quantum transport in serial-structure geometric scatterers

    Full text link
    We study transport in quantum systems consisting of a finite array of N identical single-channel scatterers. A general expression of the S matrix in terms of the individual-element data obtained recently for potential scattering is rederived in this wider context. It shows in particular how the band spectrum of the infinite periodic system arises in the limit NN\to\infty. We illustrate the result on two kinds of examples. The first are serial graphs obtained by chaining loops or T-junctions. A detailed discussion is presented for a finite-periodic "comb"; we show how the resonance poles can be computed within the Krein formula approach. Another example concerns geometric scatterers where the individual element consists of a surface with a pair of leads; we show that apart of the resonances coming from the decoupled-surface eigenvalues such scatterers exhibit the high-energy behavior typical for the delta' interaction for the physically interesting couplings.Comment: 36 pages, a LaTeX source file with 2 TeX drawings, 3 ps and 3 jpeg figures attache

    Lieb-Thirring inequalities for geometrically induced bound states

    Full text link
    We prove new inequalities of the Lieb-Thirring type on the eigenvalues of Schr\"odinger operators in wave guides with local perturbations. The estimates are optimal in the weak-coupling case. To illustrate their applications, we consider, in particular, a straight strip and a straight circular tube with either mixed boundary conditions or boundary deformations.Comment: LaTeX2e, 14 page
    corecore