457 research outputs found

    Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    Get PDF
    High-Resolution Imaging Science Experiment (HiRISE) imagery of the central Olympia Undae Dune Field in the north polar region of Mars shows a reticulate dune pattern consisting of two sets of nearly orthogonal dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarse-grained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis of dune crest length, spacing, defect density, and orientation indicates that the pattern is complex, representing two constructional generations of dunes. The oldest and best-organized generation forms the primary crestlines and is transverse to circumpolar easterly winds. Gross bed form-normal analysis of the younger pattern of crestlines indicates that it emerged with both circumpolar easterly winds and NE winds and is reworking the older pattern. Mapping of secondary flow fields over the dunes indicates that the most recent transporting winds were from the NE. The younger pattern appears to represent an influx of sediment to the dune field associated with the development of the Olympia Cavi reentrant, with NE katabatic winds channeling through the reentrant. A model of the pattern reformation based upon the reconstructed primary winds and resulting secondary flow fields shows that the development of the secondary pattern is controlled by the boundary condition of the older dune topography

    An Evolving Understanding of Enigmatic Large Ripples on Mars

    Get PDF
    Two scales of ripples form in fine sand on Mars. The larger ripples were proposed to have an equilibrium size set by an aerodynamic process, making them larger under thinner atmospheres and distinct from smaller impact ripples. Sullivan et al. (2020) show that large ripples can develop in a numerical model due to Mars’ low atmospheric pressure. Although their proposed growth‐limiting mechanism is consistent with an aerodynamic process, they argue that the ripples in their model are simply large versions of impact ripples, not a separate class of ripples. Here, we explore this debate by synthesizing recent advances in large‐ripple formation. Although significant knowledge gaps remain, it is clear that large martian ripples are larger under thinner atmospheres, and thus remain a powerful paleoclimate indicator

    Loop quantum cosmology of Bianchi type IX models

    Full text link
    The loop quantum cosmology "improved dynamics" of the Bianchi type IX model are studied. The action of the Hamiltonian constraint operator is obtained via techniques developed for the Bianchi type I and type II models, no new input is required. It is shown that the big bang and big crunch singularities are resolved by quantum gravity effects. We also present the effective equations which provide modifications to the classical equations of motion due to quantum geometry effects.Comment: 20 page

    Source-to-Sink: An Earth/Mars Comparison of Boundary Conditions for Eolian Dune Systems

    Get PDF
    Eolian dune fields on Earth and Mars evolve as complex systems within a set of boundary conditions. A source-to-sink comparison indicates that although differences exist in sediment production and transport, the systems largely converge at the dune-flow and pattern-development levels, but again differ in modes of accumulation and preservation. On Earth, where winds frequently exceed threshold speeds, dune fields are sourced primarily through deflation of subaqueous deposits as these sediments become available for transport. Limited weathering, widespread permafrost, and the low-density atmosphere on Mars imply that sediment production, sediment availability, and sand-transporting winds are all episodic. Possible sediment sources include relict sediments from the wetter Noachian; slow physical weathering in a cold, water-limited environment; and episodic sediment production associated with climatic cycles, outflow events, and impacts. Similarities in dune morphology, secondary airflow patterns over the dunes, and pattern evolution through dune interactions imply that dune stratification and bounding surfaces on Mars are comparable to those on Earth, an observation supported by outcrops of the Burns formation. The accumulation of eolian deposits occurs on Earth through the dynamics of dry, wet, and stabilizing eolian systems. Dry-system accumulation by flow deceleration into topographic basins has occurred throughout Martian history, whereas wet-system accumulation with a rising capillary fringe is restricted to Noachian times. The greatest difference in accumulation occurs with stabilizing systems, as manifested by the north polar Planum Boreum cavi unit, where accumulation has occurred through stabilization by permafrost development. Preservation of eolian accumulations on Earth typically occurs by sediment burial within subsiding basins or a relative rise of the water table or sea level. Preservation on Mars, measured as the generation of a stratigraphic record and not time, has an Earth analog with infill of impact-created and other basins, but differs with the cavi unit, where preservation is by burial beneath layered ice with a climatic driver

    Barchan-Parabolic Dune Pattern Transition From Vegetation Stability Threshold

    Get PDF
    Many dune fields exhibit a downwind transition from forward-pointing barchan dunes to stabilized, backward-pointing parabolic dunes, accompanied by an increase in vegetation. A recent model predicts this pattern transition occurs when dune surface erosion/deposition rates decrease below a threshold of half the vegetation growth rate. We provide a direct test using a unique data set of repeat topographic surveys across White Sands Dune Field and find strong quantitative support for the model threshold. We also show the threshold hypothesis applied to a barchan dune results naturally in its curvature inversion, as the point of threshold crossing progresses from the horns to the crest. This simple, general threshold framework can be an extremely useful tool for predicting the response of dune landscapes to changes in wind speed, sediment supply, or vegetation growth rate. Near the threshold, a small environmental change could result in a drastic change in dune pattern and activity

    Formation of sinuous ridges by inversion of river-channel belts in Utah, USA, with implications for Mars

    Get PDF
    Sinuous ridges are important landforms on the surface of Mars that show promise for quantifying ancient martian surface hydrology. Morphological similarity of these ridges to river channels in planform led to a hypothesis that ridges are topographically inverted river channels, or “inverted channels”, formed due to an erosion-resistant channel-filling material that preserved a snapshot of the channel geometry in inverted relief due to differential erosion. An alternative deposit-inversion hypothesis proposes that ridges represent exhumed river-channel belts, with geometries that reflect the lateral migration and vertical aggradation of rivers over significant geologic time, rather than the original channel geometry. To investigate these hypotheses we studied sinuous ridges within the Cretaceous Cedar Mountain Formation near Green River, Utah, USA. Ridges in Utah extend for hundreds of meters, are up to 120 m wide, and stand up to 39 m above the surrounding plain. Ridges are capped by sandstone bodies 3–10 m thick that contain dune- and bar-scale inclined stratification, which we interpret as eroded remnants of channel belts that record the migration and aggradation of single-thread, sand-bedded rivers, rather than channel fills that can preserve the original channel geometry. Caprocks overlie mudstones and thinner sandstone beds that are interpreted as floodplain deposits, and in cases additional channel-belt sandstones are present lower in the ridge stratigraphy. Apparent networks from branching ridges typically represent discrete sandstone bodies that cross at different stratigraphic levels rather than a coeval river network. Ridge-forming sandstone bodies also have been narrowed during exhumation by cliff retreat and bisected by fluvial erosion. Using a large compilation of channel-belt geometries on Earth and our measurements of ridges in Utah, we propose that caprock thickness is the most reliable indicator of paleo-channel geometry, and can be used to reconstruct river depth and discharge. In contrast, channel lateral migration and caprock erosion during exhumation make ridge breadth an uncertain proxy for channel width. An example in Aeolis Dorsa, Mars, illustrates that river discharge estimates based solely on caprock width may differ significantly from estimates based on caprock thickness. Overall, our study suggests that sinuous ridges are not inverted channel fills, but rather reflect exhumation of a thick stratigraphic package of stacked channel belts and overbank deposits formed from depositional rivers over significant geologic time
    corecore