103 research outputs found
Lunar radiator shade
An apparatus for rejecting waste heat from a system located on or near the lunar equator is presented. The system utilizes a reflective catenary shaped trough deployed about a vertical radiator to shade the radiator from heat emitted by the hot lunar surface. The catenary shaped trough is constructed from a film material and is aligned relative to the sun so that incoming solar energy is focused to a line just above the vertical radiator and can thereby isolate the radiator from the effects of direct sunlight. The film is in a collapsed position between side by side support rods, all of which are in a transport case. To deploy the film and support rods, a set of parallel tracks running perpendicular to length of the support rods are extended out from the transport case. After the support tracks are deployed, the support rods are positioned equidistant from each other along the length of the support tracks so that the flexible film shade between adjacent support rods is unfolded and hangs in a catenary shaped trough. A heat radiator is supported between each pair of support rods above each hanging reflective trough
Lunar Dust Contamination Effects on Lunar Base Thermal Control Systems
Many studies have been conducted to develop a thermal control system that can operate under the extreme thermal environments found on the lunar surface. While these proposed heat rejection systems use different methods to reject heat, each system contains a similar component, a thermal radiator system. These studies have always considered pristine thermal control system components and have overlooked the possible deleterious effects of lunar dust contamination. Since lunar dust has a high emissivity and absorptivity (greater than 0.9) and is opaque, dust accumulation on a surface should radically alter its optical properties and therefore alter its thermal response compared to ideal conditions. In addition, the non-specular nature of the dust particles will alter the performance of systems that employ specular surfaces to enhance heat rejection. To date, few studies have examined the effect of dust deposition on the normal control system components. These studies only focused on a single heat rejection or photovoltaic system. These studies did show that lunar dust accumulations alter the optical properties of any lunar base hardware, which in turn affects component temperatures, and heat rejection. Therefore, a new study was conducted to determine the effect of lunar dust contamination on heat rejection systems. For this study, a previously developed dust deposition model was incorporated into the Thermal Synthesizer System (TSS) model. This modeling scheme incorporates the original method of predicting dust accumulation due to vehicle landings by assuming that the thin dust layer can be treated as a semitransparent surface slightly above and in thermal contact with the pristine surface. The results of this study showed that even small amounts of dust deposits can radically alter the performance of the heat rejection systems. Furthermore. this study indicates that heat rejection systems be either located far from any landing sites or be protected from dust producing mechanisms
Aerospace applications of SINDA/FLUINT at the Johnson Space Center
SINDA/FLUINT has been found to be a versatile code for modeling aerospace systems involving single or two-phase fluid flow and all modes of heat transfer. Several applications of SINDA/FLUINT are described in this paper. SINDA/FLUINT is being used extensively to model the single phase water loops and the two-phase ammonia loops of the Space Station Freedom active thermal control system (ATCS). These models range from large integrated system models with multiple submodels to very detailed subsystem models. An integrated Space Station ATCS model has been created with ten submodels representing five water loops, three ammonia loops, a Freon loop and a thermal submodel representing the air loop. The model, which has approximately 800 FLUINT lumps and 300 thermal nodes, is used to determine the interaction between the multiple fluid loops which comprise the Space Station ATCS. Several detailed models of the flow-through radiator subsystem of the Space Station ATCS have been developed. One model, which has approximately 70 FLUINT lumps and 340 thermal nodes, provides a representation of the ATCS low temperature radiator array with two fluid loops connected only by conduction through the radiator face sheet. The detailed models are used to determine parameters such as radiator fluid return temperature, fin efficiency, flow distribution and total heat rejection for the baseline design as well as proposed alternate designs. SINDA/FLUINT has also been used as a design tool for several systems using pressurized gasses. One model examined the pressurization and depressurization of the Space Station airlock under a variety of operating conditions including convection with the side walls and internal cooling. Another model predicted the performance of a new generation of manned maneuvering units. This model included high pressure gas depressurization, internal heat transfer and supersonic thruster equations. The results of both models were used to size components, such as the heaters and gas bottles and also to point to areas where hardware testing was needed
Ultra Reliable Closed Loop Life Support for Long Space Missions
Spacecraft human life support systems can achieve ultra reliability by providing sufficient spares to replace all failed components. The additional mass of spares for ultra reliability is approximately equal to the original system mass, provided that the original system reliability is not too low. Acceptable reliability can be achieved for the Space Shuttle and Space Station by preventive maintenance and by replacing failed units. However, on-demand maintenance and repair requires a logistics supply chain in place to provide the needed spares. In contrast, a Mars or other long space mission must take along all the needed spares, since resupply is not possible. Long missions must achieve ultra reliability, a very low failure rate per hour, since they will take years rather than weeks and cannot be cut short if a failure occurs. Also, distant missions have a much higher mass launch cost per kilogram than near-Earth missions. Achieving ultra reliable spacecraft life support systems with acceptable mass will require a well-planned and extensive development effort. Analysis must determine the reliability requirement and allocate it to subsystems and components. Ultra reliability requires reducing the intrinsic failure causes, providing spares to replace failed components and having "graceful" failure modes. Technologies, components, and materials must be selected and designed for high reliability. Long duration testing is needed to confirm very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The system must be designed, developed, integrated, and tested with system reliability in mind. Maintenance and reparability of failed units must not add to the probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass should start soon since it must be a long term effort
Astronaut Mass Balance for Long Duration Missions
Human spaceflight logistics requirements are strongly driven by the daily living needs of the astronauts, including their biological functions. Oxygen, water and food are absolute requirements to sustain life and must be supplied at adequate rates. However, these rates can vary from day to day and from person to person. Beyond the body's immediate physical needs, water is also required for important health and hygiene functions within the spacecraft. Undesirable weight loss or gain aside, human waste product mass outputs will equal the inputs over time, resulting in an average astronaut mass balance. Best values, as well as range of variability for inputs and outputs are explored at both the individual physiological level and the spacecraft level. These values are important for design of life support and habitability systems as well as for mission planning of consumables. Current spacecraft life support systems are not fully closed loop, but the International Space Station (ISS) does recycle most of its air and water. The astronaut mass balances at the personal and vehicle level can have different impacts at different levels of system closure. Recommendations are made for a consistent set of values representing a realistic average astronaut mass balance over reasonable durations for exploration missions
Development of Life Support System Technologies for Human Lunar Missions
With the Preliminary Design Review (PDR) for the Orion Crew Exploration Vehicle planned to be completed in 2009, Exploration Life Support (ELS), a technology development project under the National Aeronautics and Space Administration s (NASA) Exploration Technology Development Program, is focusing its efforts on needs for human lunar missions. The ELS Project s goal is to develop and mature a suite of Environmental Control and Life Support System (ECLSS) technologies for potential use on human spacecraft under development in support of U.S. Space Exploration Policy. ELS technology development is directed at three major vehicle projects within NASA s Constellation Program (CxP): the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems, including habitats and pressurized rovers. The ELS Project includes four technical elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems and Habitation Engineering, and two cross cutting elements, Systems Integration, Modeling and Analysis, and Validation and Testing. This paper will provide an overview of the ELS Project, connectivity with its customers and an update to content within its technology development portfolio with focus on human lunar missions
Mission Benefits Analysis of Logistics Reduction Technologies
Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA fs Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash ]to ]supply ]gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources
Is a Space Laundry Needed for Exploration?
Future human space exploration missions will lengthen to years, and keeping crews clothed without a huge resupply burden is an important consideration for habitation systems. A space laundry system could be the solution; however, the resources it uses must be accounted for and must win out over the very reliable practice of bringing along enough spare underwear. Through NASA's Logistics Reduction and Repurposing project, trade off studies have been conducted to compare current space clothing systems, life extension of that clothing, traditional water based clothes washing and other sanitizing techniques. The best clothing system of course depends on the mission and assumptions, but in general, analysis results indicate that washing clothes on space missions will start to pay off as mission durations push past a year
Life Support System Technologies for NASA Exploration Missions
The Lunar Mars Life Support Test series successfully demonstrated integration and operation of advanced technologies for closed-loop life support systems, including physicochemical and biological subsystems. Increased closure was obtained when targeted technologies, such as brine dewatering subsystems, were added to further process life support system byproducts to recover resources. Physicochemical and biological systems can be integrated satisfactorily to achieve desired levels of closure. Imbalances between system components, such as differences in metabolic quotients between human crews and plants, must be addressed. Each subsystem or component that is added to increase closure will likely have added costs, ranging from initial launch mass, power, thermal, crew time, byproducts, etc., that must be factored into break even analysis. Achieving life support system closure while maintaining control of total mass and system complexity will be a challenge
Exploration Life Support Technology Development for Lunar Missions
Exploration Life Support (ELS) is one of NASA's Exploration Technology Development Projects. ELS plans, coordinates and implements the development of new life support technologies for human exploration missions as outlined in NASA's Vision for Space Exploration. ELS technology development currently supports three major projects of the Constellation Program - the Orion Crew Exploration Vehicle (CEV), the Altair Lunar Lander and Lunar Surface Systems. ELS content includes Air Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing. The primary goal of the ELS project is to provide different technology options to Constellation which fill gaps or provide substantial improvements over the state-of-the-art in life support systems. Since the Constellation missions are so challenging, mass, power, and volume must be reduced from Space Shuttle and Space Station technologies. Systems engineering analysis also optimizes the overall architecture by considering all interfaces with the life support system and potential for reduction or reuse of resources. For long duration missions, technologies which aid in closure of air and water loops with increased reliability are essential as well as techniques to minimize or deal with waste. The ELS project utilizes in-house efforts at five NASA centers, aerospace industry contracts, Small Business Innovative Research contracts and other means to develop advanced life support technologies. Testing, analysis and reduced gravity flight experiments are also conducted at the NASA field centers. This paper gives a current status of technologies under development by ELS and relates them to the Constellation customers who will eventually use them
- …