4 research outputs found

    Placental Origin of Prostaglandin F 2 α

    Get PDF
    In the present study, the question was addressed whether the feline placenta can synthesize prostaglandin F2 α (PGF2 α ). The PGFS protein was elevated, particularly at 2.5-3 weeks of pregnancy compared to 7-8 (P < 0.05) and 8.5-9 weeks (P < 0.001). Transcripts for PGFS were significantly upregulated at 2.5-3 weeks of pregnancy and then gradually declined towards the end of gestation (P < 0.001). Transcripts for PTGS2 were only upregulated in placentas from queens close to term (P < 0.001) compared with earlier phases. Staining of PTGS2 showed distinct positive signals in placentas obtained during the last week before labor, particularly in the strongly invading trophoblast surrounding blood vessels, and also in decidual cells. Shortly after implantation, signals for PGFS were localized in the trophoblast cells. Near term, PGFS staining was seen mainly in decidual cells. Both placental PGF2 α and plasma PGFM were elevated towards the end of pregnancy (P < 0.001) compared with earlier weeks of pregnancy. The content of PGF2 α in extracted placenta mirrored the PGFM level in plasma of pregnant females. During late gestation there is a significant increase in PGFM levels in maternal blood and of PGF2 α levels in placental tissue concomitant with an upregulation of placental PTGS2

    LPS-challenged TNFα production, prostaglandin secretion, and TNFα/TNFRs expression in the endometrium of domestic cats in estrus or diestrus, and in cats with pyometra or receiving medroxyprogesterone acetate

    Get PDF
    Progesterone (P4) derivatives which are commonly used to block the cyclicity of domestic cats disturb the endocrine balance in the endometrium. The aims of this study were (i) to examine whether lipopolysaccharide (LPS) is responsible for enhancement of tumor necrosis factor-α (TNFα) secretion by the feline endometrial epithelial and stromal cells in vitro, (ii) to know whether immunolocalization of TNFα/TNFR1 and TNFR2 differs in cats at estrus or diestrus, receiving medroxyprogesterone acetate and suffering from pyometra, and (iii) to determine if TNFα-challenged prostaglandin secretion is stopped by prostaglandin synthases inhibitors. A total of 37 domestic adult cats in estrus or diestrus, receiving octane medroxyprogesterone or having clinical symptoms of pyometra, were enrolled in this study. The results obtained showed a distinct increase in LPS-challenged TNFα secretion in endometrial epithelial, but not stromal cells. TNFα augmented PG secretion was blocked by phospholipase A2 (PLA2) and cyclooxygeanase-2 (COX-2), but not by mitogen-activated protein kinase (MAPK) inhibitor. TNFα/TNFR1 and 2 protein expressions were limited mostly to the surface and glandular epithelium. TNFα/TNFRs protein was upregulated in the inflammatory uterus and hence may be involved in development of pathologic changes in the endometrial glands in cats receiving exogenous P4 as a hormonal contraceptive

    Placental Origin of Prostaglandin F2α in the Domestic Cat

    No full text
    In the present study, the question was addressed whether the feline placenta can synthesize prostaglandin F2α (PGF2α). The PGFS protein was elevated, particularly at 2.5–3 weeks of pregnancy compared to 7-8 (P<0.05) and 8.5–9 weeks (P<0.001). Transcripts for PGFS were significantly upregulated at 2.5–3 weeks of pregnancy and then gradually declined towards the end of gestation (P<0.001). Transcripts for PTGS2 were only upregulated in placentas from queens close to term (P<0.001) compared with earlier phases. Staining of PTGS2 showed distinct positive signals in placentas obtained during the last week before labor, particularly in the strongly invading trophoblast surrounding blood vessels, and also in decidual cells. Shortly after implantation, signals for PGFS were localized in the trophoblast cells. Near term, PGFS staining was seen mainly in decidual cells. Both placental PGF2α and plasma PGFM were elevated towards the end of pregnancy (P<0.001) compared with earlier weeks of pregnancy. The content of PGF2α in extracted placenta mirrored the PGFM level in plasma of pregnant females. During late gestation there is a significant increase in PGFM levels in maternal blood and of PGF2α levels in placental tissue concomitant with an upregulation of placental PTGS2

    Cells expressing CD4, CD8, MHCII and endoglin in the canine corpus luteum of pregnancy, and prepartum activation of the luteal TNFα system

    No full text
    In the dog, knowledge about involvement of the immune system in controlling luteal function is restricted to observations showing a time-dependent invasion of immune cells into the corpus luteum (CL) of non-pregnant bitches. Therefore, this study investigated the presence of CD4-, CD8-, MHCII- and endoglin-expressing cells in CL collected throughout pregnancy from pre-implantation until prepartum luteolysis. Immunohistochemistry and semi-quantitative RT-PCR were applied. The time-dependent expression of CD4, CD8 and endoglin was more strongly related to formation of the CL, whereas MHCII was induced during luteolysis. Next, the luteal expression of TNFα and its receptors, TNFR1 and TNFR2, was analyzed in non-pregnant dogs between days 5-65 after ovulation and during pregnancy. Moreover, the effects of progesterone withdrawal were investigated in mid-pregnant dogs treated with an antigestagen aglepristone. The TNFα system was induced in the early CL of non-pregnant dogs. In pregnant dogs, expression of TNFα did not vary much, contrasting with increased expression of both receptors in the post-implantation period and significantly decreased expression at mid-gestation; prepartum luteolysis was characterized by increased TNFR2 expression. Apart from the downregulated expression of TNFR1, the changes observed following antigestagen treatment resembled those observed during normal prepartum luteolysis. A modulatory function of the TNFα system during formation of the canine CL is suggested, possibly related to the strong accompanying vascularization and luteal infiltration with activated macrophages. Contrasting with the slow luteal regression in non-pregnant dogs, in pregnant animals the upregulation of TNFR2 expression during prepartum luteolysis implies functional involvement of the TNFα system during that time
    corecore