1 research outputs found

    From Molecular Structure to Macromolecular Organization: Keys to Design Supramolecular Biomaterials

    No full text
    In the past decade, significant progress has been made in the field of biomaterials, for potential applications in tissue engineering or drug delivery. We have recently developed a new class of thermoplastic elastomers, based on ureidopyrimidinone (UPy) quadruple hydrogen bonding motifs. These supramolecular polymers form nanofiber-like aggregates initially <i>via</i> the dimerization of the UPy units followed by lateral urea-hydrogen bonding. Combined kinetic and thermodynamic studies unravel the pathway complexity in the formation of these polymorphic nanofibers and the subtlety of the polymer’s design, while these morphologies are so critically important when these materials are used in combination with cells. We also show that the cell behavior directly depends on the length and shape of the nanofibers, illustrating the key importance of macromolecular and supramolecular organization of biomaterials. This study leads to new design rules that determine what factors are decisive for a polymer to be a good candidate as biomaterial
    corecore