7 research outputs found

    The influence of chlorine in indoor swimming pools on the composition of breathing phase of professional swimmers

    Get PDF
    Objectives: Swimming is one of the most popular forms of physical activity. Pool water is cleaned with chlorine, which - in combination with compounds contained in water - could form chloramines and trichloromethane in the swimmer’s lungs. The aim of the present study was to examine the effect of swimming training in an indoor pool on the composition of swimmers’ respiratory phase metabolomics, and develop a system to provide basic information about its impact on the swimmer’s airway mucosa metabolism, which could help to assess the risk of secondary respiratory tract diseases i.e. sport results, condition, and health including lung acute and chronic diseases). Design: A group of competitive swimmers participated in the study and samples of their respiratory phase before training, immediately after training, and 2 h after training were assessed. Methods: Sixteen male national and international-level competitive swimmers participated in this study. Respiratory phase analysis of the indoor swimming pool swimmers was performed. Gas chromatography combined with mass spectrometry (GCMS) was used in the measurements. All collected data were transferred to numerical analysis for trends of tracking and mapping. The breathing phase was collected on special porous material and analyzed using GCMS headspace. Results: The obtained samples of exhaled air were composed of significantly different metabolomics when compared before, during and after exercise training. This suggests that exposition to indoor chlorine causes changes in the airway mucosa Conclusion: This phenomenon may be explained by occurrence of a chlorine-initiated bio-reaction in the swimmers’ lungs. The obtained results indicate that chromatographic exhaled gas analysis is a sensitive method of pulmonary metabolomic changes assessment. Presented analysis of swimmers exhaled air indicates, that indoor swimming may be responsible for airway irritation caused by volatile chlorine compounds and their influence on lung metabolism

    Continuous representation of unevenly sampled signals : an application to the analysis of heart rate variability

    No full text
    The various methods for continuous representation of heart rate were tested on artificial signals as well as on real patient data. The limitation for the tests on real HR data is, that no error for the HR representation can be calculated for the values between measurements since thes 'are unknown. It can clearly be seen that only two of the methods for continuous representation of HR actually retain the original HR values: IHR and DECON. By improvements of the algorithm used for the deconvolution method in terms of higher computational precision, the errors obtained with this technique can be further reduced. But even in its current state, DECON is clearly superior to all the other techniques and can serve to judge the quality of all simplified techniques for the continuous representation of heart rate

    The Relationship between Stress Levels Measured by a Questionnaire and the Data Obtained by Smart Glasses and Finger Pulse Oximeters among Polish Dental Students

    No full text
    Stress is a physical, mental, or emotional response to a change and is a significant problem in modern society. In addition to questionnaires, levels of stress may be assessed by monitoring physiological signals, such as via photoplethysmogram (PPG), electroencephalogram (EEG), electrocardiogram (ECG), electrodermal activity (EDA), facial expressions, and head and body movements. In our study, we attempted to find the relationship between the perceived stress level and physiological signals, such as heart rate (HR), head movements, and electrooculographic (EOG) signals. The perceived stress level was acquired by self-assessment questionnaires in which the participants marked their stress level before, during, and after performing a task. The heart rate was acquired with a finger pulse oximeter and the head movements (linear acceleration and angular velocity) and electrooculographic signals were recorded with JINS MEME ES_R smart glasses (JINS Holdings, Inc., Tokyo, Japan). We observed significant differences between the perceived stress level, heart rate, the power of linear acceleration, angular velocity, and EOG signals before performing the task and during the task. However, except for HR, these signals were poorly correlated with the perceived stress level acquired during the task

    Recognition of Drivers’ Activity Based on 1D Convolutional Neural Network

    No full text
    Background and objective: Driving a car is a complex activity which involves movements of the whole body. Many studies on drivers’ behavior are conducted to improve road traffic safety. Such studies involve the registration and processing of multiple signals, such as electroencephalography (EEG), electrooculography (EOG) and the images of the driver’s face. In our research, we attempt to develop a classifier of scenarios related to learning to drive based on the data obtained in real road traffic conditions via smart glasses. In our approach, we try to minimize the number of signals which can be used to recognize the activities performed while driving a car. Material and methods: We attempt to evaluate the drivers’ activities using both electrooculography (EOG) and a deep learning approach. To acquire data we used JINS MEME smart glasses furnished with 3-point EOG electrodes, 3-axial accelerometer and 3-axial gyroscope. Sensor data were acquired on 20 drivers (ten experienced and ten learner drivers) on the same 28.7 km route under real road conditions in southern Poland. The drivers performed several tasks while wearing the smart glasses and the tasks were linked to the signal during the drive. For the recognition of four activities (parking, driving through a roundabout, city traffic and driving through an intersection), we used one-dimensional convolutional neural network (1D CNN). Results: The maximum accuracy was 95.6% on validation set and 99.8% on training set. The results prove that the model based on 1D CNN can classify the actions performed by drivers accurately. Conclusions: We have proved the feasibility of recognizing drivers’ activity based solely on EOG data, regardless of the driving experience and style. Our findings may be useful in the objective assessment of driving skills and thus, improving driving safety

    Experiences of the Telemedicine and eHealth Conferences in Poland—A Cross-National Overview of Progress in Telemedicine

    No full text
    The progress in telemedicine can be observed globally and locally. Technological changes in telecommunications systems are intertwined with developments in telemedicine. The recent COVID-19 pandemic has expanded the potential of teleconsultations and telediagnosis solutions in all areas of medicine. This article presents: (1) an overview of milestones in the development of telecommunications systems that allow progress in telemedicine and (2) an analysis of the experiences of the last seven conferences of telemedicine and eHealth in Poland. The telemedicine and eHealth conferences have grown steadily in Poland since their inception in the late 1990s. An exemplary conference program content was used to assess the scientific maturity of the conference, measured by the indices of research dissemination and the impact of publications. The overview presents progress in selected areas of telemedicine, looking at local developments and broader changes. The growing interest in telemedicine in the world’s medical sciences is demonstrated by visibility metrics in Google Scholar, Pubmed, Scopus and Web of Science. National scientific events are assumed to raise interest in the population and influence the creation of general policies. As seen in the example of Poland, the activity of the scientific community gathered around the Polish Telemedicine Society led to novel legal acts that allowed the general practice of telemedicine during the SARS-CoV-2 pandemic. Local scientific conferences focusing on telemedicine research can be a catalyst for changes in attitudes and regulations and the preparation of recommendations for the practice of telemedicine and electronic health. On the basis of the results of this study, it can be concluded that the progress in telemedicine cannot be analyzed in isolation from the ubiquitous developments in technology and telecommunications. More research is needed to assess the cumulative impact of long-standing scientific conferences in telemedicine, as exemplified by the telemedicine and eHealth conferences in Poland

    Experiences of the Telemedicine and eHealth Conferences in Poland—A Cross-National Overview of Progress in Telemedicine

    No full text
    The progress in telemedicine can be observed globally and locally. Technological changes in telecommunications systems are intertwined with developments in telemedicine. The recent COVID-19 pandemic has expanded the potential of teleconsultations and telediagnosis solutions in all areas of medicine. This article presents: (1) an overview of milestones in the development of telecommunications systems that allow progress in telemedicine and (2) an analysis of the experiences of the last seven conferences of telemedicine and eHealth in Poland. The telemedicine and eHealth conferences have grown steadily in Poland since their inception in the late 1990s. An exemplary conference program content was used to assess the scientific maturity of the conference, measured by the indices of research dissemination and the impact of publications. The overview presents progress in selected areas of telemedicine, looking at local developments and broader changes. The growing interest in telemedicine in the world’s medical sciences is demonstrated by visibility metrics in Google Scholar, Pubmed, Scopus and Web of Science. National scientific events are assumed to raise interest in the population and influence the creation of general policies. As seen in the example of Poland, the activity of the scientific community gathered around the Polish Telemedicine Society led to novel legal acts that allowed the general practice of telemedicine during the SARS-CoV-2 pandemic. Local scientific conferences focusing on telemedicine research can be a catalyst for changes in attitudes and regulations and the preparation of recommendations for the practice of telemedicine and electronic health. On the basis of the results of this study, it can be concluded that the progress in telemedicine cannot be analyzed in isolation from the ubiquitous developments in technology and telecommunications. More research is needed to assess the cumulative impact of long-standing scientific conferences in telemedicine, as exemplified by the telemedicine and eHealth conferences in Poland
    corecore