619 research outputs found

    Experimental Tests of the New Paradigm for Laser Filamentation in Gases

    Full text link
    Since their discovery in the mid-1990s, ultrafast laser filaments in gases have been described as products of a dynamic balance between Kerr self-focusing and defocusing by free electric charges that are generated via multi-photon ionization on the beam axis. This established paradigm has been recently challenged by a suggestion that the Kerr effect saturates and even changes sign at high intensity of light, and that this sign reversal, not free-charge defocusing, is the dominant mechanism responsible for the extended propagation of laser filaments. We report qualitative tests of the new theory based on electrical and optical measurements of plasma density in femtosecond laser filaments in air and argon. Our results consistently support the established paradigm.Comment: 4 pages, 4 figure

    Innovative use of sclerochronology in marine resource management

    Get PDF
    In recent years, technical and analytical developments in sclerochronology, based on the analysis of accretionary hard tissues, have improved our ability to assess the life histories of a wide range of marine organisms. This Theme Section on the innovative use of sclerochronology was motivated by the cross-disciplinary session ‘Looking backwards to move ahead—how the wider application of new technologies to interpret scale, otolith, statolith and other biomineralised age-registering structures could improve management of natural resources’ convened at the 2016 ICES Annual Science Conference in Riga, Latvia. The contributions to this Theme Section provide examples of applications to improve the assessment and management of populations and habitats, or showcase the potential for sclerochronology to provide a deeper understanding of the interaction between marine life and its environment, including the effects of changing climate

    Falling Incapacity Benefit claims in a former industrial city: policy impacts or labour market improvement?

    Get PDF
    This article provides an in-depth study of Incapacity Benefit (IB) claims in a major city and of the factors behind their changing level. It relates to the regime prior to the introduction of the Employment and Support Allowance (ESA) in 2008. Glasgow has had one of the highest levels of IB in Britain with a peak of almost one fifth of the working age population on IB or Severe Disablement Allowance (SDA). However, over the past decade the number of IB claimants in Glasgow, as in other high claiming areas, has fallen at a faster rate than elsewhere, and Glasgow now has twice the national proportion of working-age people on IB/SDA rather than its peak of three times. The rise in IB in Glasgow can be attributed primarily to deindustrialisation; between 1971 and 1991, over 100,000 manufacturing jobs were lost in the city. Policy response was belated. Lack of local statistics on IB led to a lengthy delay in official recognition of the scale of the issue, and targeted programmes to divert or return IB claimants to work did not begin on any scale until around 2004. Evidence presented in the article suggests that the reduction in claims, which has mainly occurred since about 2003, has been due more to a strengthening labour market than to national policy changes or local programmes. This gives strong support to the view that excess IB claims are a form of disguised unemployment. Further detailed evaluation of ongoing programmes is required to develop the evidence base for this complex area. However, the study casts some doubt on the need for the post-2006 round of IB reforms in high-claim areas, since rapid decline in the number of claimants was already occurring in these areas. The article also indicates the importance of close joint working between national and local agencies, and further development of local level statistics on IB claimants

    ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer death; identifying PDAC enablers may reveal potential therapeutic targets. Expression of the actomyosin regulatory ROCK1 and ROCK2 kinases increased with tumor progression in human and mouse pancreatic tumors, while elevated ROCK1/ROCK2 expression in human patients, or conditional ROCK2 activation in a KrasG12D/p53R172H mouse PDAC model, was associated with reduced survival. Conditional ROCK1 or ROCK2 activation promoted invasive growth of mouse PDAC cells into three‐dimensional collagen matrices by increasing matrix remodeling activities. RNA sequencing revealed a coordinated program of ROCK‐induced genes that facilitate extracellular matrix remodeling, with greatest fold‐changes for matrix metalloproteinases (MMPs) Mmp10 and Mmp13. MMP inhibition not only decreased collagen degradation and invasion, but also reduced proliferation in three‐dimensional contexts. Treatment of KrasG12D/p53R172H PDAC mice with a ROCK inhibitor prolonged survival, which was associated with increased tumor‐associated collagen. These findings reveal an ancillary role for increased ROCK signaling in pancreatic cancer progression to promote extracellular matrix remodeling that facilitates proliferation and invasive tumor growth

    Cosmology of Axions and Moduli: A Dynamical Systems Approach

    Full text link
    This paper is concerned with string cosmology and the dynamics of multiple scalar fields in potentials that can become negative, and their features as (Early) Dark Energy models. Our point of departure is the "String Axiverse", a scenario that motivates the existence of cosmologically light axion fields as a generic consequence of string theory. We couple such an axion to its corresponding modulus. We give a detailed presentation of the rich cosmology of such a model, ranging from the setting of initial conditions on the fields during inflation, to the asymptotic future. We present some simplifying assumptions based on the fixing of the axion decay constant faf_a, and on the effective field theory when the modulus trajectory is adiabatic, and find the conditions under which these assumptions break down. As a by-product of our analysis, we find that relaxing the assumption of fixed faf_a leads to the appearance of a new meta-stable de-Sitter region for the modulus without the need for uplifting by an additional constant. A dynamical systems analysis reveals the existence of many fixed point attractors, repellers and saddle points, which we analyse in detail. We also provide geometric interpretations of the phase space. The fixed points can be used to bound the couplings in the model. A systematic scan of certain regions of parameter space reveals that the future evolution of the universe in this model can be rich, containing multiple epochs of accelerated expansion.Comment: 27 pages, 12 figures, comments welcome, v2 minor correction

    Update of the Anopheles gambiae PEST genome assembly

    Get PDF
    BACKGROUND: The genome of Anopheles gambiae, the major vector of malaria, was sequenced and assembled in 2002. This initial genome assembly and analysis made available to the scientific community was complicated by the presence of assembly issues, such as scaffolds with no chromosomal location, no sequence data for the Y chromosome, haplotype polymorphisms resulting in two different genome assemblies in limited regions and contaminating bacterial DNA. RESULTS: Polytene chromosome in situ hybridization with cDNA clones was used to place 15 unmapped scaffolds (sizes totaling 5.34 Mbp) in the pericentromeric regions of the chromosomes and oriented a further 9 scaffolds. Additional analysis by in situ hybridization of bacterial artificial chromosome (BAC) clones placed 1.32 Mbp (5 scaffolds) in the physical gaps between scaffolds on euchromatic parts of the chromosomes. The Y chromosome sequence information (0.18 Mbp) remains highly incomplete and fragmented among 55 short scaffolds. Analysis of BAC end sequences showed that 22 inter-scaffold gaps were spanned by BAC clones. Unmapped scaffolds were also aligned to the chromosome assemblies in silico, identifying regions totaling 8.18 Mbp (144 scaffolds) that are probably represented in the genome project by two alternative assemblies. An additional 3.53 Mbp of alternative assembly was identified within mapped scaffolds. Scaffolds comprising 1.97 Mbp (679 small scaffolds) were identified as probably derived from contaminating bacterial DNA. In total, about 33% of previously unmapped sequences were placed on the chromosomes. CONCLUSION: This study has used new approaches to improve the physical map and assembly of the A. gambiae genome

    From the Spectrum to Inflation: A Second Order Inverse Formula for the General Slow-Roll Spectrum

    Full text link
    We invert the second order, single field, general slow-roll formula for the power spectrum, to obtain a second order formula for inflationary parameters in terms of the primordial power spectrum
    • 

    corecore