114 research outputs found

    Factors affecting transmission of trypanosomes through tsetse flies

    Get PDF
    The maintenance of human sleeping sickness and nagana across sub-Saharan Africa depends on cyclical transmission of trypanosomes through tsetse flies. Infection rates in tsetse are normally very low as most parasites ingested with a bloodmeal die in the fly gut. Infections which successfully establish in the fly midgut may subsequently mature into mammalian infective trypanosomes in the salivary glands. However, these processes are not automatic and involve tsetse, symbiont, trypanosome and environmental factors.Previous work showed that the symbiotic bacterium Sodalis glossinidius was involved in susceptibility to trypanosome infection. Streptozotocin (a toxic analogue of the bacterium's main food source) has been recently shown to decrease trypanosome infection rates in the offspring of treated tsetse. In the present work streptozotocin did remove S. glossinidius from the offspring of treated flies but it was not possible to generate a line of tsetse free from 5. glossinidius infection.Other potential factors involved in acquisition of trypanosome infection were then examined. A range of antioxidants or cyclic GMP were shown to prevent trypanosome death in the tsetse midgut. The process was shown to be independent of protein synthesis as D-cysteine (an unphysiological isomer of L-cysteine) also enhanced midgut infection rates. Further experiments showed that cGMP could significantly inhibit trypanosome death when fed up to 96 h post-infection, whereas antioxidants only functioned for 48 h post-infection. Moreover it was found that maturation of established midgut infections could be regulated by environmental stimuli as well as by antioxidants. Cold shock of infected flies as well as addition of L-cysteine but not D-cysteine to the bloodmeal resulted in significant increases in maturation rates, while nitric oxide synthase inhibitors reduced maturation rates.It is concluded that reactive oxygen species play a major role in killing trypanosomes entering the tsetse midgut and that cysteine containing proteins and/or nitric oxide are essential for differentiation of established midgut infections into mammalian infective salivary gland infections

    Hard ticks (Acari: Ixodidae) and tick-borne diseases of sheep and goats in Africa: A Review

    Get PDF
    Ticks are leading vectors of economically important pathogens that affect small ruminants due to favourable climatic conditions across different regions of the African continent. They are responsible for both direct and indirect economic losses in the livestock industry. This review focuses on the species diversity of hard ticks, their biology, tick-borne diseases of sheep and goats including non-infectious disease, and risk factors to tick infestation in Africa. Furthermore, our review provides recent updates on distribution of ticks and tick-borne pathogens of small ruminants in Africa. It was observed that several species and subspecies of hard ticks belonging to the genera Hyalomma (Hy), Rhipicephalus (Rh), Ixodes (I) and Amblyomma (Am) were found infesting small ruminants across the different regions of the continent. Of these genera, Rhipicephalus ticks accounts for the majority of the registered species, with exactly 27 different species infesting small ruminant stocks comprising of different developmental instars and adults of the tick. Rhipicephalus decolaratus, Rh. e. evertsi and Rh. appendiculatus were the three most common Rhipicephalus species reported. Both protozoal (Babesia and Theileria) and bacterial (Anaplasma, Rickettsia, Ehrlichia, Coxiella and Mycoplasma) pathogens have being reported to be amplified in several hard tick species and/or small ruminant hosts. Furthermore, tick paralysis and lameness were non-infectious conditions attributed to tick infestations. Amblyomma hebraeum and Rh. glabroscutatum may cause lameness in goats, while Hy. rufipes is responsible for the same condition in Merino sheep. Host paralysis due to a neurotoxin released by female Rh. e. evertsi and I. rubicundus has been documented within the continent. We therefore advocate for the need of integrated control measures against tick-borne pathogens (TBPs) including their arthropod vectors, to be performed simultaneously to ease the burden of vector-borne diseases in small ruminant production.<br/

    Effects of cyclic nucleotides on midgut infections and maturation of T. b. brucei in G. m. morsitans

    Get PDF
    Cyclic nucleotide signalling through cyclic adenosine monophosphate (cAMP) is thought to play an important role in the transformation of the long slender (dividing) form to the short-stumpy (arrested) form in the mammalian bloodstream but the role of cyclic nucleotides in the tsetse-based part of the trypanosome life cycle is unknown. In a series of in vivo experiments, it was found that cyclic guanosine monophosphate (cGMP) but not cAMP could induce significantly higher rates of midgut infection in tsetse. Continuous feeding of either cGMP or cAMP to tsetse had no effect on rates of maturation of established midgut infections suggesting that these two parts of the life cycle in tsetse are not linked

    African Animal Trypanocide Resistance: A systematic Review and Meta-Analysis

    Get PDF
    BACKGROUND: African animal trypanocide resistance (AATr) continues to undermine global efforts to eliminate the transmission of African trypanosomiasis in endemic communities. The continued lack of new trypanocides has precipitated drug misuse and overuse, thus contributing to the development of the AATr phenotype. In this study, we investigated the threat associated with AATr by using the major globally available chemotherapeutical agents. METHODS: A total of seven electronic databases were screened for an article on trypanocide resistance in AATr by using keywords on preclinical and clinical trials with the number of animals with treatment relapse, days taken to relapse, and resistant gene markers using the PRISMA checklist. Data were cleaned using the SR deduplicator and covidence and analyzed using Cochrane RevMan®. Dichotomous outputs were presented using risk ratio (RR), while continuous data were presented using the standardized mean difference (SMD) at a 95% confidence interval. RESULTS: A total of eight publications in which diminazene aceturate (DA), isometamidium chloride (ISM), and homidium chloride/bromide (HB) were identified as the major trypanocides were used. In all preclinical studies, the development of resistance was in the order of HB > ISM > DA. DA vs. ISM (SMD = 0.15, 95% CI: −0.54, 0.83; I(2) = 46%, P = 0.05), DA vs. HB (SMD = 0.96, 95% CI: 0.47, 1.45; I(2) = 0%, P = 0.86), and HB vs. ISM (SMD = −0.41, 95% CI: −0.96, 0.14; I(2) = 5%, P = 0.38) showed multiple cross-resistance. Clinical studies also showed evidence of multi-drug resistance on DA and ISM (RR = 1.01, 95% CI: 0.71–1.43; I(2) = 46%, P = 0.16). To address resistance, most preclinical studies increased the dosage and the treatment time, and this failed to improve the patient's prognosis. Major markers of resistance explored include TbAT1, P1/P2 transporters, folate transporters, such as F-I, F-II, F-III, and polyamine biosynthesis inhibitors. In addition, immunosuppressed hosts favor the development of AATr. CONCLUSION: AATr is a threat that requires a shift in the current disease control strategies in most developing nations due to inter-species transmission. Multi-drug cross-resistance against the only accessible trypanocides is a major public health risk, justifying the need to revise the policy in developing countries to promote control of African trypanosomiasis

    Trypanocide usage in the cattle belt of southwestern Uganda

    Get PDF
    Background: Systematic infrastructure and regulatory weaknesses over many decades, in communities struggling with animal African trypanosomiasis (AAT) would be expected to create an environment that would promote drug misuse and risk development of drug resistance. Here we explore rural community practices of livestock keepers, livestock extension officers and drug shop attendants to determine whether appropriate practice was being followed in administration of trypanocides and other drugs. Methods: A questionnaire-based survey was undertaken in southwestern Uganda in 2022 involving 451 farmers who kept cattle, sheep, or goats and 79 ‘professionals’ who were either livestock extension officers or drug shop attendants. Results: Respondents reported using one or more type of trypanocidal drug on 80.1% of the 451 farms in the last 30 days. Diminazene aceturate was used on around three-quarters of farms, while isometamidium chloride was used on around one-fifth. Homidium bromide was used on less than 1% of farms. Cattle were significantly more likely to be treated with trypanocides than sheep or goats. On around two-thirds of farms, trypanocides were prepared and injected by farmers, with extension officers administering these drugs on most of the other third, especially on cattle farms. Almost all drugs were obtained from privately-owned drug shops. For treatment of AAT with trypanocides, prescription-only medicines were routinely used by farmers without professional supervision and in the absence of a definitive diagnosis. While a far greater proportion of professionals had a better education and had received training on the use of trypanocides than farmers, there was relatively little difference in their ability to use these drugs correctly. Farmers were more likely than professionals to use only DA to treat trypanosomiasis and were more likely to use antibiotics as well as trypanocidal drugs to treat the animal. Furthermore, they estimated, on average, that twice the recommended dose of either diminazene aceturate or isometamidium chloride was needed to treat a hypothetical 400 kg bovine. A minority of both farmers and professionals reported that they observed the recommended withdrawal times following injection of trypanocidal drugs and very few of either group knew the recommended withdrawal times for milk or meat. Only one in six farmers reported using the sanative pair (alternating use of diminazene aceturate and isometamidium chloride), to reduce the risk of drug resistant trypanosome strains emerging, while this approach was more widely used by professionals. Farmers reported using antibiotics more commonly than the professionals, especially in sheep and goats, raising concerns as to overuse and misuse of this critical class of drugs. In addition to using trypanocides, most farmers also reported using a topical veterinary pesticide for the control of ticks and tsetse. On average, farmers spent 12.2% of their income from livestock sales on trypanocides. Conclusion: This study highlights the complexity of issues involved in the fight against AAT using drug treatment. A multistakeholder campaign to increase awareness amongst farmers, drug shop attendants and extension workers of the importance of adherence to recommended drug dosing, using the sanative pair and following recommended drug withdrawal guidance would promote best practice, reduce the risk of emergence of resistant strains of trypanosomes and support enhanced food safety

    Critical linkages between livestock production, livestock trade and potential spread of human African trypanosomiasis in Uganda:Bioeconomic herd modeling and livestock trade analysis

    Get PDF
    Background: Tsetse-transmitted human African trypanosomiasis (HAT) remains endemic in Uganda. The chronic form caused by Trypanosoma brucei gambiense (gHAT) is found in north-western Uganda, whereas the acute zoonotic form of the disease, caused by T. b. brucei rhodesiense (rHAT), occurs in the eastern region. Cattle is the major reservoir of rHAT in Uganda. These two forms of HAT are likely to converge resulting in a public health disaster. This study examines the intricate and intrinsic links between cattle herd dynamics, livestock trade and potential risk of spread of rHAT northwards. Methods: A bio-economic cattle herd model was developed to simulate herd dynamics at the farm level. Semi-structured interviews (n = 310), focus group discussions (n = 9) and key informant interviews (n = 9) were used to evaluate livestock markets (n = 9) as part of the cattle supply chain analysis. The cattle market data was used for stochastic risk analysis. Results: Cattle trade in eastern and northern Uganda is dominated by sale of draft and adult male cattle as well as exportation of young male cattle. The study found that the need to import draft cattle at the farm level was to cover deficits because of the herd structure, which is mostly geared towards animal traction. The importation and exportation of draft cattle and disposal of old adult male cattle formed the major basis of livestock movement and could result in the spread of rHAT northwards. The risk of rHAT infected cattle being introduced to northern Uganda from the eastern region via cattle trade was found to be high (i.e. probability of 1). Conclusion: Through deterministic and stochastic modelling of cattle herd and cattle trade dynamics, this study identifies critical links between livestock production and trade as well as potential risk of rHAT spread in eastern and northern Uganda. The findings highlight the need for targeted and routine surveillance and control of zoonotic diseases such as rHAT

    Systematic Review and Meta-Analysis on Knowledge Attitude and Practices on African Animal Trypanocide Resistance

    Get PDF
    Background: African trypanocide resistance is an emerging public health emergency whose control requires a revisit on farmer’s knowledge, attitudes, and practices in developing countries. African animal trypanocide resistance (AATr) is rife in an environment where drug use and policy decisions are disjointed. The objective of the study was to identify community factors responsible for the development of AATr. This was important since diminazene aceturate (DA), isometamidium chloride (ISM), and homidium bromide (HB) have existed for over 30 years and no new drugs have been provided to farmers. Methods: An electronic keyword search across 12 databases was conducted using a search criterion from 1806 to June 2022. This generated a total of 24 publications, but after removing duplicates, review articles, and nonrelated articles, a total of eight papers were included in the analysis by following the PRISMA checklist. A meta-analysis was conducted on the data extracted and the risk ratio and inverse variance at 95% confidence interval were calculated using RevMan(®). Results: All the eight articles in the study showed that DA was the most preferred trypanocide in both West and Eastern Africa. Poor farmer knowledge of AATr and limited drug options were major drivers for trypanocide resistance. In addition, farmer treatments, use of untrained personnel, poor administration, poor dosing, and preparation of trypanocides were major drivers for the development of AATr and similarities were identified in DA and ISM practices (P = 0.13). Conclusions: AATr is spread in developing countries due to a lack of community knowledge, attitudes, and drug-use practices. This situation could be reversed through interdisciplinary collaborations in endemic communities by promoting effective treatments and responsible drug handling

    Dogs’ health and demographics in wildlife-populated and tsetse-infested villages of Mambwe district, eastern Zambia.

    Get PDF
    Good dog-keeping practices and access to veterinary care are essential for the well-being of dogs. As the main causes of morbidity and mortality in the rural canine population in Zambia are poorly understood, we followed a cohort of 162 indigenous dogs for six months in wildlife-populated and tsetse-infested villages of Mambwe district, eastern Zambia to gain deeper insights. Dogs lacked basic home and veterinary care, they were often starved and burdened with ticks, and some passed live adult worms in their stool. The frequent exposure of dogs to tsetse bites and consumption of fresh raw game meat and bones puts them at greater risk of acquiring African trypanosomiasis. Nearly 20% of dogs were lost to follow-up, with the main causes being poor health (58.1%), predation by wild carnivores (29%), and owner culling or euthanasia (12.9%). We observed that indigenous dogs' general well-being and survival were largely influenced by their environment, infectious diseases, injuries sustained during interaction with conspecifics and wildlife, and community attitudes and practices associated with dog ownership

    Amplified fragment length polymorphism (AFLP) analysis of closely related wild and captive tsetse fly (Glossina morsitans morsitans) populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tsetse flies (Diptera: Glossinidae) are vectors of trypanosomes that cause sleeping sickness in humans and nagana in livestock across sub-Saharan Africa. Tsetse control strategies rely on a detailed understanding of the epidemiology and ecology of tsetse together with genetic variation within and among populations. High-resolution nuclear genetic markers are useful tools for elucidation of the genetic basis of phenotypic traits. In this study amplified fragment length polymorphism (AFLP) markers were developed to analyze genetic variation in <it>Glossina morsitans morsitans </it>from laboratory and field-collected populations from Zimbabwe.</p> <p>Results</p> <p>A total of seven hundred and fifty one loci from laboratory and field populations of <it>G. m. morsitans </it>from Zimbabwe were genotyped using AFLP with seven primer combinations. Analysis identified 335 polymorphic loci. The two populations could be distinguished by cluster and principal components analysis (PCA) analysis, indicating that AFLP markers can be used to separate genetically similar populations; at the same time differences observed between laboratory and field populations were not very great. Among the techniques investigated, the use of acetone was the most reliable method of preservation of tsetse for subsequent extraction of high molecular weight DNA. An interesting finding was that AFLP also enabled robust within-population discrimination of male and female tsetse flies due to their different X chromosome DNA complements.</p> <p>Conclusions</p> <p>AFLP represents a useful additional tool to add to the suite of techniques currently available for the genetic analysis of tsetse populations and represents a useful resource for identification of the genetic basis of important phenotypic traits.</p
    • …
    corecore