15 research outputs found

    KCNMA1 Encoded Cardiac BK Channels Afford Protection against Ischemia-Reperfusion Injury

    Get PDF
    Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+-and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioninglike effect on survival of cardiomyocytes after ischemia/reperfusion injury. Recently, mitochondrial BK channels (mitoBKs) in cardiomyocytes were implicated as infarct-limiting factors that derive directly from the KCNMA1 gene encoding for canonical BKs usually present at the plasma membrane of cells. However, some studies challenged these cardio-protective roles of mitoBKs. Herein, we present electrophysiological evidence for paxilline- and NS11021-sensitive BK-mediated currents of 190 pS conductance in mitoplasts from wild-type but not BK-/- cardiomyocytes. Transmission electron microscopy of BK-/- ventricular muscles fibres showed normal ultra-structures and matrix dimension, but oxidative phosphorylation capacities at normoxia and upon re-oxygenation after anoxia were significantly attenuated in BK-/- permeabilized cardiomyocytes. In the absence of BK, post-anoxic reactive oxygen species (ROS) production from cardiomyocyte mitochondria was elevated indicating that mitoBK fine-tune the oxidative state at hypoxia and reoxygenation. Because ROS and the capacity of the myocardium for oxidative metabolism are important determinants of cellular survival, we tested BK-/- hearts for their response in an ex-vivo model of ischemia/reperfusion (I/R) injury. Infarct areas, coronary flow and heart rates were not different between wild-type and BK-/- hearts upon I/R injury in the absence of ischemic pre-conditioning (IP),but differed upon IP. While the area of infarction comprised 28 +/- 3% of the area at risk in wild-type, it was increased to 58 +/- 5% in BK-/- hearts suggesting that BK mediates the beneficial effects of IP. These findings suggest that cardiac BK channels are important for proper oxidative energy supply of cardiomyocytes at normoxia and upon re-oxygenation after prolonged anoxia and that IP might indeed favor survival of the myocardium upon I/R injury in a BK-dependent mode stemming from both mitochondrial post-anoxic ROS modulation and non-mitochondrial localizations

    Sinoatrial node dysfunction induces cardiac arrhythmias in diabetic mice

    Get PDF
    BACKGROUND: The aim of this study was to probe cardiac complications, including heart-rate control, in a mouse model of type-2 diabetes. Heart-rate development in diabetic patients is not straight forward: In general, patients with diabetes have faster heart rates compared to non-diabetic individuals, yet diabetic patients are frequently found among patients treated for slow heart rates. Hence, we hypothesized that sinoatrial node (SAN) dysfunction could contribute to our understanding of the mechanism behind this conundrum and the consequences thereof. METHODS: Cardiac hemodynamic and electrophysiological characteristics were investigated in diabetic db/db and control db/+ mice. RESULTS: We found improved contractile function and impaired filling dynamics of the heart in db/db mice, relative to db/+ controls. Electrophysiologically, we observed comparable heart rates in the two mouse groups, but SAN recovery time was prolonged in diabetic mice. Adrenoreceptor stimulation increased heart rate in all mice and elicited cardiac arrhythmias in db/db mice only. The arrhythmias emanated from the SAN and were characterized by large RR fluctuations. Moreover, nerve density was reduced in the SAN region. CONCLUSIONS: Enhanced systolic function and reduced diastolic function indicates early ventricular remodeling in obese and diabetic mice. They have SAN dysfunction, and adrenoreceptor stimulation triggers cardiac arrhythmia originating in the SAN. Thus, dysfunction of the intrinsic cardiac pacemaker and remodeling of the autonomic nervous system may conspire to increase cardiac mortality in diabetic patients

    Differential effects of the transient outward K(+) current activator NS5806 in the canine left ventricle

    No full text
    OBJECTIVE: To examine the electrophysiological and molecular properties of the transient outward current (I(to)) in canine left ventricle using a novel I(to) activator, NS5806. METHODS AND RESULTS: I(to) was measured in isolated epicardial (Epi), midmyocardial (Mid) and endocardial (Endo) cells using whole-cell patch-clamp techniques. NS5806 activation of K(v)4.3 current was also studied in CHO-K1 cells and Xenopus laevis oocytes. In CHO-K1 cells co-transfected with K(v)4.3 and KChIP2, NS5806 (10 μM) caused a 35 % increase in current amplitude and a marked slowing of current decay with τ increasing from 7.0±0.4 to 10.2±0.3 ms. In the absence of KChIP2, current decay was unaffected by NS5806. In ventricular myocytes, NS5806 increased I(to) density by 80%, 82%, and 16% in Epi, Mid, and Endo myocytes, respectively (at +40 mV) and shifted steady-state inactivation to negative potentials. NS5806 also significantly slowed decay of I(to), increasing total charge to 227%, 192% and 83% of control in Epi, Mid and Endo cells, respectively (+40 mV, p<0.05). Quantification of K(v)4.3 and KChIP2 mRNA in the 3 ventricular cell types revealed that levels of K(v)4.3 message was uniform but those of KChIP2 were significantly greater in Epi and Mid cells. The KChIP2 gradient was confirmed at the protein level by Western blot. CONCLUSIONS: Our results suggest that NS5806 augments I(to) by increasing current density and slowing decay and that both depend on the presence of KChIP2. I(to) and its augmentation by NS5806 are greatest in Epi and Mid cells because KChIP2 levels are highest in these cell types

    Na +

    No full text
    corecore