3 research outputs found

    The Effect of Training on Erythrocyte Energy Status and Plasma Purine Metabolites in Athletes

    No full text
    This study aimed to assess the changes in red blood cell (RBC) energy status and plasma purine metabolites concentration over a one-year training cycle in endurance-trained (EN; n = 11, 20–26 years), and sprint-trained (SP; n = 11, 20–30 years) competitive athletes in comparison to recreationally-trained individuals (RE; n = 11, 20–26 years). Somatic, physiological, and biochemical variables were measured in four training phases differing in exercise load profile: transition, general, specific, and competition. Significantly highest values of RBC adenylate energy charge (AEC; p ≤ 0.001), ATP-to-ADP and ADP-to-AMP ratios (p ≤ 0.05), and plasma levels of adenosine (Ado; p ≤ 0.05) were noted in the competition phase in the EN and SP, but not in the RE group. Significantly lowest plasma levels of adenosine diphosphate (ADP; p ≤ 0.05), adenosine monophosphate (AMP; p ≤ 0.001), inosine (Ino; p ≤ 0.001), and hypoxanthine (Hx; p ≤ 0.001) accompanied by higher erythrocyte hypoxanthine-guanine phosphoribosyltransferase (HGPRT) activity (p ≤ 0.001), were observed in the competition phase in both athletic groups. No significant alterations were found in the erythrocyte concentration of guanine nucleotides in any group. In conclusion, periodized training of competitive athletes’ results in a favorable adaptation of RBC metabolism. The observed changes cover improved RBC energy status (increased AEC and ATP/ADP ratio) and reduced purine loss with more efficient erythrocyte purine pool recovery (increased HGPRT activity and plasma levels of Ado; decreased Hx and Ino concentration)

    Activation of the nicotinamide N-methyltransferase (NNMT)-1-methylnicotinamide (MNA) pathway in pulmonary hypertension

    Get PDF
    Background: Pulmonary arterial hypertension (PAH) is associated with inflammatory response but it is unknown whether it is associated with alterations in NNMT activity and MNA plasma concentration. Here we examined changes in NNMT-MNA pathway in PAH in rats and humans. Methods: PAH in rats was induced by a single subcutaneous injection of MCT (60mg/kg). Changes in NNMT activity in the lungs and liver (assessed as the rate of conversion of nicotinamide (NA) to MNA), changes in plasma concentration of MNA and its metabolites (analyzed by LC/MS) were analyzed in relation to PAH progression. PAH was characterized by right ventricular hypertrophy (gross morphology), cardiac dysfunction (by MRI), lung histopathology, lung ultrastructure, and ET-1 concentration in plasma. NO-dependent and PGI2-dependent function in isolated lungs was analyzed. In naive patients with idiopathic pulmonary hypertension (IPAH) characterized by hemodynamic and biochemical parameters MNA and its metabolites in plasma were also measured. Results: MCT-injected rats developed hypertrophy and functional impairment of the right ventricle, hypertrophy of the pulmonary arteries, endothelial ultrastructural defects and a progressive increase in ET-1 plasma concentration-findings all consistent with PAH development. In isolated lung, NO-dependent regulation of hypoxic pulmonary vasoconstriction was impaired, while PGI2 production (6-keto-PGF1伪) was increased. NNMT activity increased progressively in the liver and in the lungs following MCT injection, and NNMT response was associated with an increase in MNA and 6-keto-PGF1伪 concentration in plasma. In IPAH patients plasma concentration of MNA was elevated as compared with healthy controls. Conclusions: Progression of pulmonary hypertension is associated with the activation of the NNMT-MNA pathway in rats and humans. Given the vasoprotective activity of exogenous MNA, which was previously ascribed to PGI2 release, the activation of the endogenous NNMT-MNA pathway may play a compensatory role in PAH

    Differential involvement of IL-6 in the early and late phase of 1-methylnicotinamide (MNA) release in Concanavalin A-induced hepatitis

    No full text
    Exogenous 1-methylnicotinamide (MNA) displays anti-inflammatory activity. The aim of this work was to characterize the profile of release of endogenous MNA during the initiation and progression of murine hepatitis induced by Concanavalin A (ConA). In particular we aimed to clarify the role of interleukin-6 (IL-6) as well as the energy state of hepatocytes in MNA release in early and late phases of ConA-induced hepatitis in mice. Hepatitis was induced by ConA in IL-6+/+ and IL-6-/- mice, and various parameters of liver inflammation and injury, as well as the energy state of hepatocytes, were analysed in relation to MNA release. The decrease in ATP/ADP and NADH/NAD ratios, cytokine release (IL-6, IFN-纬), acute phase response (e.g. haptoglobin) and liver injury (alanine aminotransaminase, ALT) were all blunted in ConA-induced hepatitis in IL-6-/- mice as compared to IL-6+/+ mice. The release of MNA in response to Con A was also significantly blunted in IL-6-/- mice as compared to IL-6+/+ mice in the early stage of ConA-induced hepatitis. In turn, nicotinamide N-methyltransferase (NNMT) and aldehyde oxidase (AO) activities were blunted in the liver and MNA plasma concentration was elevated to similar degree in the late stage after Concanavalin A in IL-6+/+ and IL-6-/- mice. In conclusion, we demonstrated that in ConA-induced hepatitis, early, but not late MNA release was IL-6-dependent. Our results suggest that in the initiation and early hepatitis, MNA release is linked to the energy deficit/impaired redox status in hepatocytes, while in a later phase, MNA release is rather linked to the systemic inflammation
    corecore