20 research outputs found

    Special Issue in Honor of Professor Nick Hadjiliadis' Retirement

    Get PDF

    Synthetic Peptides as Structural Maquettes of Angiotensin-I Converting Enzyme Catalytic Sites

    Get PDF
    The rational design of synthetic peptides is proposed as an efficient strategy for the structural investigation of crucial protein domains difficult to be produced. Only after half a century since the function of ACE was first reported, was its crystal structure solved. The main obstacle to be overcome for the determination of the high resolution structure was the crystallization of the highly hydrophobic transmembrane domain. Following our previous work, synthetic peptides and Zinc(II) metal ions are used to build structural maquettes of the two Zn-catalytic active sites of the ACE somatic isoform. Structural investigations of the synthetic peptides, representing the two different somatic isoform active sites, through circular dichroism and NMR experiments are reported

    Use of the 2-Pyridinealdoxime/N,N′-Donor Ligand Combination in Cobalt(III) Chemistry: Synthesis and Characterization of Two Cationic Mononuclear Cobalt(III) Complexes

    Get PDF
    The use of 2-pyridinealdoxime (paoH)/N,N′-donor ligand (L-L) “blend” in cobalt chemistry has afforded two cationic mononuclear cobalt(III) complexes of the general type [Co(pao)2(L-L)]+, where L-L = 1,10-phenanthroline (phen) and 2,2′-bipyridine (bpy). The CoCl2/paoH/L-L (1 : 2 : 1) reaction system in MeOH gives complexes [CoIII(pao)2(phen)]Cl·2H2O (1·2H2O) and [CoIII(pao)2(bpy)]Cl·1.5MeOH (2·1.5MeOH). The structures of the complexes were determined by single-crystal X-ray crystallography. The CoIII ions are six-coordinate, surrounded by three bidentate chelating ligands, that is, two pao− and one phen or bpy. The deprotonated oxygen atom of the pao− ligand remains uncoordinated and participates in hydrogen bonding with the solvate molecules. IR data of the complexes are discussed in terms of the nature of bonding and the known structures

    Synthesis, X-Ray Structure, and Characterization of Catena-bis(benzoate)bis{N,N-bis(2-hydroxyethyl)glycinate}cadmium(II)

    Get PDF
    The reaction of N, N-bis(2-hydroxyethyl)glycine (bicine; bicH3) with Cd(O2CPh)2 · 2H2O in MeOH yielded the polymeric compound [Cd2(O2CPh)2(bicH2)2]n(1). The complex crystallizes in the tetragonal space group P41212. The lattice constants are a = b = 12.737(5) and c = 18.288(7) Å. The compound contains chains of repeating {Cd2(O2CPh)2(bicH2)2} units. One CdII atom is coordinated by two carboxylate oxygen, four hydroxyl oxygen, and two nitrogen atoms from two symmetry-related 2.21111 (Harris notation) bicH2− ligands. The other CdII atom is coordinated by six carboxylate oxygen atoms, four from two bicH2− ligands and two from the monodentate benzoate groups. Each bicinate(-1) ligand chelates the 8-coordinate, square antiprismatic CdII atom through one carboxylate oxygen, the nitrogen, and both hydroxyl oxygen atoms and bridges the second, six-coordinate trigonal prismatic CdII center through its carboxylate oxygen atoms. Compound 1 is the first structurally characterized cadmium(II) complex containing any anionic form of bicine as ligand. IR data of 1 are discussed in terms of the coordination modes of the ligands and the known structure

    Synthesis, X-Ray Structure, and Characterization of a Complex Containing the Hexakis(urea)cobalt(II) Cation and Lattice Urea Molecules

    No full text
    The 12: 1 reaction of urea (U) with CoI2 in EtOH yielded the “clathrate-coordination” compound [CoU6]I2·4U (1). The complex crystallizes in the monoclinic space group P21/c. The lattice constants are a = 9.844(4), b = 7.268(3), c = 24.12(1) Å, and β=98.12(1)∘. The crystal structure determination demonstrates the existence of octahedral [CoU6]2+ cations, I- counterions, and two different types (two U1 and two U2) of hydrogen-bonded, lattice urea molecules. The [CoU6]2+ cations and the U1 lattice molecules form two-dimensional hydrogen-bonded layers which are parallel to the ab plane. The I- anions are placed above and below each layer, and are hydrogen bonded both to U1 molecules and [CoU6]2+ cations. Each U2 molecule is connected to a [CoU6]2+ cation through an N–H⋯O hydrogen bond resulting in a three-dimensional network. Room temperature magnetic susceptibility and spectroscopic (solid-state UV/Vis, IR, Raman) data of 1 are discussed in terms of the nature of bonding and the known structure
    corecore