418 research outputs found

    D-brane networks in flux vacua, generalized cycles and calibrations

    Get PDF
    We consider chains of generalized submanifolds, as defined by Gualtieri in the context of generalized complex geometry, and define a boundary operator that acts on them. This allows us to define generalized cycles and the corresponding homology theory. Gauge invariance demands that D-brane networks on flux vacua must wrap these generalized cycles, while deformations of generalized cycles inside of a certain homology class describe physical processes such as the dissolution of D-branes in higher-dimensional D-branes and MMS-like instantonic transitions. We introduce calibrations that identify the supersymmetric D-brane networks, which minimize their energy inside of the corresponding homology class of generalized cycles. Such a calibration is explicitly presented for type II N=1 flux compactifications to four dimensions. In particular networks of walls and strings in compactifications on warped Calabi-Yau's are treated, with explicit examples on a toroidal orientifold vacuum and on the Klebanov-Strassler geometry.Comment: 42 pages, 4 eps figures, version to appear in JHE

    Twisted Homology

    Get PDF
    D-branes are classified by twisted K-theory. Yet twisted K-theory is often hard to calculate. We argue that, in the case of a compactification on a simply-connected six manifold, twisted K-theory is isomorphic to a much simpler object, twisted homology. Unlike K-theory, homology can be twisted by a class of any degree and so it classifies not only D-branes but also M-branes. Twisted homology classes correspond to cycles in a certain bundle over spacetime, and branes may decay via Kachru-Pearson-Verlinde transitions only if this cycle is trivial. We provide a spectral sequence which calculates twisted homology, the kth step treats D(p-2k)-branes ending on Dp-branes.Comment: 29 pages, 3 eps figures, added Report-n
    corecore