4 research outputs found

    Investigation of the electro-spinnability of alginate solutions containing gold precursor HAuCl4

    Get PDF
    Alginate nanofibers with an average diameter of 75 nm have been prepared by the electrospinning process. In addition, the spinnability of the solutions in the presence of the gold precursor HAuCl4 was investigated. At low concentrations of HAuCl4 well-formed nanofibers were produced, whereas as its concentration increases the nanofibrous mats present an increased number of bead-like defects. Herein, the in situ preparation of gold nanoparticles (Au NPs) is discussed since sodium alginate (SA) acts as the reducing agent and a mechanism is proposed in order to explain the bead-effect as well as the surface morphology of the alginate fibers decorated with Au NPs

    Zwitterionic nanofibers of super-glue for transparent and biocompatible multi-purpose coatings

    Get PDF
    Here we show that macrozwitterions of poly(ethyl 2-cyanoacrylate), commonly called Super Glue, can easily assemble into long and well defined fibers by electrospinning. The resulting fibrous networks are thermally treated on glass in order to create transparent coatings whose superficial morphology recalls the organization of the initial electrospun mats. These textured coatings are characterized by low liquid adhesion and anti-staining performance. Furthermore, the low friction coefficient and excellent scratch resistance make them attractive as solid lubricants. The inherent texture of the coatings positively affects their biocompatibility. In fact, they are able to promote the proliferation and differentiation of myoblast stem cells. Optically-transparent and biocompatible coatings that simultaneously possess characteristics of low water contact angle hysteresis, low friction and mechanical robustness can find application in a wide range of technological sectors, from the construction and automotive industries to electronic and biomedical devices

    Self-Cleaning Organic/Inorganic Photo-Sensors

    No full text
    We present the fabrication of a multifunctional, hybrid organic–inorganic micropatterned device, which is capable to act as a stable photosensor and, at the same time, displaying inherent superhydrophobic self-cleaning wetting characteristics. In this framework several arrays of epoxy photoresist square micropillars have been fabricated on n-doped crystalline silicon substrates and subsequently coated with a poly­(3-hexylthiophene-2,5-diyl) (P3HT) layer, giving rise to an array of organic/inorganic p–n junctions. Their photoconductivity has been measured under a solar light simulator at different illumination intensities. The current–voltage (<i>I</i>–<i>V</i>) curves show high rectifying characteristics, which are found to be directly correlated with the illumination intensity. The photoresponse occurs in extremely short times (within few tens of milliseconds range). The influence of the interpillar distance on the <i>I</i>–<i>V</i> characteristics of the sensors is also discussed. Moreover, the static and dynamic wetting properties of these organic/inorganic photosensors can be easily tuned by changing the pattern geometry. Measured static water contact angles range from 125° to 164°, as the distance between the pillars is increased from 14 to 120 μm while the contact angle hysteresis decreases from 36° down to 2°

    Modified Carbon Nanotubes Favor Fibroblast Growth by Tuning the Cell Membrane Potential

    No full text
    As is known, carbon nanotubes favor cell growth in vitro, although the underlying mechanisms are not yet fully elucidated. In this study, we explore the hypothesis that electrostatic fields generated at the interface between nonexcitable cells and appropriate scaffold might favor cell growth by tuning their membrane potential. We focused on primary human fibroblasts grown on electrospun polymer fibers (poly(lactic acid)PLA) with embedded multiwall carbon nanotubes (MWCNTs). The MWCNTs were functionalized with either the p-methoxyphenyl (PhOME) or the p-acetylphenyl (PhCOMe) moiety, both of which allowed uniform dispersion in a solvent, good mixing with PLA and the consequent smooth and homogeneous electrospinning process. The inclusion of the electrically conductive MWCNTs in the insulating PLA matrix resulted in differences in the surface potential of the fibers. Both PLA and PLA/MWCNT fiber samples were found to be biocompatible. The main features of fibroblasts cultured on different substrates were characterized by scanning electron microscopy, immunocytochemistry, Rt-qPCR, and electrophysiology revealing that fibroblasts grown on PLA/MWCNT reached a healthier state as compared to pure PLA. In particular, we observed physiological spreading, attachment, and Vmem of fibroblasts on PLA/MWCNT. Interestingly, the electrical functionalization of the scaffold resulted in a more suitable extracellular environment for the correct biofunctionality of these nonexcitable cells. Finally, numerical simulations were also performed in order to understand the mechanism behind the different cell behavior when grown either on PLA or PLA/MWCNT samples. The results show a clear effect on the cell membrane potential, depending on the underlying substrate
    corecore