4 research outputs found

    Photoluminescence of tetrahedral quantum-dot quantum wells

    Full text link
    Taking into account the tetrahedral shape of a quantum dot quantum well (QDQW) when describing excitonic states, phonon modes and the exciton-phonon interaction in the structure, we obtain within a non-adiabatic approach a quantitative interpretation of the photoluminescence spectrum of a single CdS/HgS/CdS QDQW. We find that the exciton ground state in a tetrahedral QDQW is bright, in contrast to the dark ground state for a spherical QDQW. The position of the phonon peaks in the photoluminescence spectrum is attributed to interface optical phonons. We also show that the experimental value of the Huang-Rhys parameter can be obtained only within the nonadiabatic theory of phonon-assisted transitions.Comment: 4 pages, 4 figures, E-mail addresses: [email protected], [email protected], [email protected], [email protected], to be published in Phys. Rev. Letter

    Resonant Terahertz Light Absorption by Virtue of Tunable Hybrid Interface Phonon–Plasmon Modes in Semiconductor Nanoshells

    Get PDF
    Metallic nanoshells have proven to be particularly versatile, with applications in biomedical imaging and surface-enhanced Raman spectroscopy. Here, we theoretically demonstrate that hybrid phonon-plasmon modes in semiconductor nanoshells offer similar advantages in the terahertz regime. We show that, depending on tm,n,nhe doping of the semiconductor shells, terahertz light absorption in these nanostructures can be resonantly enhanced due to the strong coupling between interface plasmons and phonons. A threefold to fourfold increase in the absorption peak intensity was achieved at specific values of electron concentration. Doping, as well as adapting the nanoshell radius, allowed for fine-tuning of the absorption peak frequencies
    corecore