37 research outputs found

    Spectroscopic properties of large open quantum-chaotic cavities with and without separated time scales

    Full text link
    The spectroscopic properties of an open large Bunimovich cavity are studied numerically in the framework of the effective Hamiltonian formalism. The cavity is opened by attaching leads to it in four different ways. In some cases, short-lived and long-lived resonance states coexist. The short-lived states cause traveling waves in the transmission while the long-lived ones generate superposed fluctuations. The traveling waves oscillate as a function of energy. They are not localized in the interior of the large chaotic cavity. In other cases, the transmission takes place via standing waves with an intensity that closely follows the profile of the resonances. In all considered cases, the phase rigidity fluctuates with energy. It is mostly near to its maximum value and agrees well with the theoretical value for the two-channel case. As shown in the foregoing paper \cite{1}, all cases are described well by the Poisson kernel when the calculation is restricted to an energy region in which the average SS matrix is (nearly) constant.Comment: 13 pages, 4 figure
    corecore