190 research outputs found
Optical properties and Raman scattering of vanadium ladder compounds
We investigate electronic and optical properties of the V-based ladder
compounds NaV2O5, the iso-structural CaV2O5, as well as MgV2O5, which differs
from NaV2O5 and CaV2O5 in the c axis stacking. We calculate ab initio the A_g
phonon modes in these compounds as a basis for the investigation of the
electron-phonon and spin-phonon coupling. The phonon modes together with the
dielectric tensors as a function of the corresponding ion displacements are the
starting point for the calculation of the A_g Raman scattering.Comment: 4 pages, 5 figures, .bbl file with references included. Accepted for
publication in Physica Script
Cluster Algorithm for a Solid-On-Solid Model with Constraints
We adapt the VMR (valleys-to-mountains reflections) algorithm, originally
devised by us for simulations of SOS models, to the BCSOS model. It is the
first time that a cluster algorithm is used for a model with constraints. The
performance of this new algorithm is studied in detail in both phases of the
model, including a finite size scaling analysis of the autocorrelations.Comment: 10 pages, 3 figures appended as ps-file
Loop algorithms for quantum simulations of fermion models on lattices
Two cluster algorithms, based on constructing and flipping loops, are
presented for worldline quantum Monte Carlo simulations of fermions and are
tested on the one-dimensional repulsive Hubbard model. We call these algorithms
the loop-flip and loop-exchange algorithms. For these two algorithms and the
standard worldline algorithm, we calculated the autocorrelation times for
various physical quantities and found that the ordinary worldline algorithm,
which uses only local moves, suffers from very long correlation times that
makes not only the estimate of the error difficult but also the estimate of the
average values themselves difficult. These difficulties are especially severe
in the low-temperature, large- regime. In contrast, we find that new
algorithms, when used alone or in combinations with themselves and the standard
algorithm, can have significantly smaller autocorrelation times, in some cases
being smaller by three orders of magnitude. The new algorithms, which use
non-local moves, are discussed from the point of view of a general prescription
for developing cluster algorithms. The loop-flip algorithm is also shown to be
ergodic and to belong to the grand canonical ensemble. Extensions to other
models and higher dimensions is briefly discussed.Comment: 36 pages, RevTex ver.
Accessing the dynamics of large many-particle systems using Stochastic Series Expansion
The Stochastic Series Expansion method (SSE) is a Quantum Monte Carlo (QMC)
technique working directly in the imaginary time continuum and thus avoiding
"Trotter discretization" errors. Using a non-local "operator-loop update" it
allows treating large quantum mechanical systems of many thousand sites. In
this paper we first give a comprehensive review on SSE and present benchmark
calculations of SSE's scaling behavior with system size and inverse
temperature, and compare it to the loop algorithm, whose scaling is known to be
one of the best of all QMC methods. Finally we introduce a new and efficient
algorithm to measure Green's functions and thus dynamical properties within
SSE.Comment: 11 RevTeX pages including 7 figures and 5 table
Charge ordering in quarter-filled ladder systems coupled to the lattice
We investigate charge ordering in the presence of electron-phonon coupling
for quarter-filled ladder systems by using Exact Diagonalization. As an example
we consider NaV2O5 using model parameters obtained from first-principles
band-structure calculations. The relevant Holstein coupling to the lattice
considerably reduces the critical value of the nearest-neighbor Coulomb
repulsion at which formation of the zig-zag charge-ordered state occurs, which
is then accompanied by a static lattice distortion. Energy and length of a
kink-like excitation on the background of the distorted lattice are calculated.
Spin and charge spectra on ladders with and without static distortion are
obtained, and the charge gap and the effective spin-spin exchange parameter J
are extracted. J agrees well with experimental results. Analysis of the
dynamical Holstein model, restricted to a small number of phonons, shows that
low frequency lattice vibrations increase the charge order, accompanied by
dynamically produced zig-zag lattice distortions.Comment: 11 pages, 17 figures, revised version as to appear in Phys. Rev.
Quantum Monte Carlo Simulation of the Trellis Lattice Heisenberg Model for SrCuO and CaVO
We study the spin-1/2 trellis lattice Heisenberg model, a coupled spin ladder
system, both by perturbation around the dimer limit and by quantum Monte Carlo
simulations. We discuss the influence of the inter-ladder coupling on the spin
gap and the dispersion, and present results for the temperature dependence of
the uniform susceptibility. The latter was found to be parameterized well by a
mean-field type scaling ansatz. Finally we discuss fits of experimental
measurements on SrCuO and CaVO to our results.Comment: 7 pages, 8 figure
Thermodynamic and diamagnetic properties of weakly doped antiferromagnets
Finite-temperature properties of weakly doped antiferromagnets as modeled by
the two-dimensional t-J model and relevant to underdoped cuprates are
investigated by numerical studies of small model systems at low doping. Two
numerical methods are used: the worldline quantum Monte Carlo method with a
loop cluster algorithm and the finite-temperature Lanczos method, yielding
consistent results. Thermodynamic quantities: specific heat, entropy and spin
susceptibility reveal a sizeable perturbation induced by holes introduced into
a magnetic insulator, as well as a pronounced temperature dependence. The
diamagnetic susceptibility introduced by coupling of the magnetic field to the
orbital current reveals an anomalous temperature dependence, changing character
from diamagnetic to paramagnetic at intermediate temperatures.Comment: LaTeX, 10 pages, 10 figures, submitted to Phys. Rev.
Phase diagram of depleted Heisenberg model for CaV4O9
We have numerically investigated the 1/5-depleted Heisenberg square lattice
representing CaV4O9 using the Quantum Monte Carlo loop algorithm. We have
determined the phase diagram of the model as a function of the ratio of the two
different couplings: bonds within a plaquette and dimer bonds between
plaquettes. By calculating both the spin gap and the staggered magnetization we
determine the range of stability of the long range ordered (LRO) phase. At
isotropic coupling LRO survives the depletion. But the close vicinity of the
isotropic point to the spin gap phase leads us to the conclusion that already a
small frustrating next nearest neighbor interaction can drive the system into
the quantum disordered phase and thus explain the spin gap behavior of CaV4O9
Effects of Nonmagnetic Impurity Doping on Spin Ladder System
Effects of nonmagnetic impurity doping on an AF spin-1/2 Heisenberg ladder
system are studied by the QMC method. A single nonmagnetic impurity induces a
localized spin-1/2 moment accompanied by "static" and enhanced AF correlations
around it. Small and finite concentration of impurities induces a remarkable
change of magnetic and thermodynamic properties with gapless excitations. It
also shows rather sharp but continuous crossover around the concentration of
about 4%. Above the crossover concentration, all the spins are strongly coupled
participating in the enhanced and rather uniform power-law decay of the
antiferromagnetic correlation. Below the crossover, each impurity forms an
antiferromagnetic cluster only weakly coupled each other. For random
distribution of impurities, large Curie-like susceptibility accompanied with
small residual entropy is obtained at low temperatures in agreement with recent
experimental observation in Zn-doped . Temperature dependence of
AF susceptibility shows power-law-like but weaker divergence than the single
chain AFH in the temperature range studied.Comment: 4 pages, LaTeX+epsf.sty, submitted to J.Phys.Soc.Jpn. New results of
AF susceptibility are adde
Monte Carlo Study of the Separation of Energy Scales in Quantum Spin 1/2 Chains with Bond Disorder
One-dimensional Heisenberg spin 1/2 chains with random ferro- and
antiferromagnetic bonds are realized in systems such as . We have investigated numerically the thermodynamic properties of a
generic random bond model and of a realistic model of by the quantum Monte Carlo loop algorithm. For the first time we
demonstrate the separation into three different temperature regimes for the
original Hamiltonian based on an exact treatment, especially we show that the
intermediate temperature regime is well-defined and observable in both the
specific heat and the magnetic susceptibility. The crossover between the
regimes is indicated by peaks in the specific heat. The uniform magnetic
susceptibility shows Curie-like behavior in the high-, intermediate- and
low-temperature regime, with different values of the Curie constant in each
regime. We show that these regimes are overlapping in the realistic model and
give numerical data for the analysis of experimental tests.Comment: 7 pages, 5 eps-figures included, typeset using JPSJ.sty, accepted for
publication in J. Phys. Soc. Jpn. 68, Vol. 3. (1999
- …
