Effects of nonmagnetic impurity doping on an AF spin-1/2 Heisenberg ladder
system are studied by the QMC method. A single nonmagnetic impurity induces a
localized spin-1/2 moment accompanied by "static" and enhanced AF correlations
around it. Small and finite concentration of impurities induces a remarkable
change of magnetic and thermodynamic properties with gapless excitations. It
also shows rather sharp but continuous crossover around the concentration of
about 4%. Above the crossover concentration, all the spins are strongly coupled
participating in the enhanced and rather uniform power-law decay of the
antiferromagnetic correlation. Below the crossover, each impurity forms an
antiferromagnetic cluster only weakly coupled each other. For random
distribution of impurities, large Curie-like susceptibility accompanied with
small residual entropy is obtained at low temperatures in agreement with recent
experimental observation in Zn-doped SrCu2O3. Temperature dependence of
AF susceptibility shows power-law-like but weaker divergence than the single
chain AFH in the temperature range studied.Comment: 4 pages, LaTeX+epsf.sty, submitted to J.Phys.Soc.Jpn. New results of
AF susceptibility are adde