3 research outputs found

    Measuring and mitigating behavioural segregation using Call Detail Records

    Get PDF
    The overwhelming amounts of data we generate in our daily routine and in social networks has been crucial for the understanding of various social and economic factors. The use of this data represents a low-cost alternative source of information in parallel to census data and surveys. Here, we advocate for such an approach to assess and alleviate the segregation of Syrian refugees in Turkey. Using a large dataset of mobile phone records provided by Turkey's largest mobile phone service operator, TĂŒrk Telekom, in the frame of the Data 4 Refugees project, we define, analyse and optimise inter-group integration as it relates to the communication patterns of two segregated populations: refugees living in Turkey and the local Turkish population. Our main hypothesis is that making these two communities more similar (in our case, in terms of behaviour) may increase the level of positive exposure between them, due to the well-known sociological principle of homophily. To achieve this, working from the records of call and SMS origins and destinations between and among both populations, we develop an extensible, statistically-solid, and reliable framework to measure the differences between the communication patterns of two groups. In order to show the applicability of our framework, we assess how house mixing strategies, in combination with public and private investment, may help to overcome segregation. We first identify the districts of the Istanbul province where refugees and local population communication patterns differ in order to then utilise our framework to improve the situation. Our results show potential in this regard, as we observe a significant reduction of segregation while limiting, in turn, the consequences in terms of rent increase

    Explainable, automated urban interventions to improve pedestrian and vehicle safety

    No full text
    At the moment, urban mobility research and governmental initiatives are mostly focused on motor-related issues, e.g. the problems of congestion and pollution. And yet, we cannot disregard the most vulnerable elements in the urban landscape: pedestrians, exposed to higher risks than other road users. Indeed, safe, accessible, and sustainable transport systems in cities are a core target of the UN's 2030 Agenda. Thus, there is an opportunity to apply advanced computational tools to the problem of traffic safety, in regards especially to pedestrians, who have been often overlooked in the past. This paper combines public data sources, large-scale street imagery and computer vision techniques to approach pedestrian and vehicle safety with an automated, relatively simple, and universally-applicable data-processing scheme. The steps involved in this pipeline include the adaptation and training of a Residual Convolutional Neural Network to determine a hazard index for each given urban scene, as well as an interpretability analysis based on image segmentation and class activation mapping on those same images. Combined, the outcome of this computational approach is a fine-grained map of hazard levels across a city, and an heuristic to identify interventions that might simultaneously improve pedestrian and vehicle safety. The proposed framework should be taken as a complement to the work of urban planners and public authorities

    Author Correction: Shape of (101955) Bennu indicative of a rubble pile with internal stiffness

    No full text
    International audienc
    corecore