23 research outputs found

    A wide field-of-view, modular, high-density diffuse optical tomography system for minimally constrained three-dimensional functional neuroimaging

    Get PDF
    The ability to produce high-quality images of human brain function in any environment and during unconstrained movement of the subject has long been a goal of neuroimaging research. Diffuse optical tomography, which uses the intensity of back-scattered near-infrared light from multiple source-detector pairs to image changes in haemoglobin concentrations in the brain, is uniquely placed to achieve this goal. Here, we describe a new generation of modular, fibre-less, high-density diffuse optical tomography technology that provides exceptional sensitivity, a large dynamic range, a field-of-view sufficient to cover approximately one-third of the adult scalp, and also incorporates dedicated motion sensing into each module. Using in-vivo measures, we demonstrate a noise-equivalent power of 318 fW, and an effective dynamic range of 142 dB. We describe the application of this system to a novel somatomotor neuroimaging paradigm that involves subjects walking and texting on a smartphone. Our results demonstrate that wearable high-density diffuse optical tomography permits three-dimensional imaging of the human brain function during overt movement of the subject; images of somatomotor cortical activation can be obtained while subjects move in a relatively unconstrained manner, and these images are in good agreement with those obtained while the subjects remain stationary. The scalable nature of the technology we described here paves the way for the routine acquisition of high-quality, three-dimensional, whole-cortex diffuse optical tomography images of cerebral haemodynamics, both inside and outside of the laboratory environment, which has profound implications for neuroscience

    Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa

    Get PDF
    Cortical mapping of cognitive function during infancy is poorly understood in low-income countries due to the lack of transportable neuroimaging methods. We have successfully piloted functional near infrared spectroscopy (fNIRS) as a neuroimaging tool in rural Gambia. Four-to-eight month old infants watched videos of Gambian adults perform social movements, while haemodynamic responses were recorded using fNIRS. We found distinct regions of the posterior superior temporal and inferior frontal cortex that evidenced either visual-social activation or vocally selective activation (vocal > non-vocal). The patterns of selective cortical activation in Gambian infants replicated those observed within similar aged infants in the UK. These are the first reported data on the measurement of localized functional brain activity in young infants in Africa and demonstrate the potential that fNIRS offers for field-based neuroimaging research of cognitive function in resource-poor rural communities

    Functional near infrared spectroscopy (fNIRS) to assess cognitive function in infants in rural Africa

    Get PDF
    Cortical mapping of cognitive function during infancy is poorly understood in low-income countries due to the lack of transportable neuroimaging methods. We have successfully piloted functional near infrared spectroscopy (fNIRS) as a neuroimaging tool in rural Gambia. Four-to-eight month old infants watched videos of Gambian adults perform social movements, while haemodynamic responses were recorded using fNIRS. We found distinct regions of the posterior superior temporal and inferior frontal cortex that evidenced either visual-social activation or vocally selective activation (vocal > non-vocal). The patterns of selective cortical activation in Gambian infants replicated those observed within similar aged infants in the UK. These are the first reported data on the measurement of localized functional brain activity in young infants in Africa and demonstrate the potential that fNIRS offers for field-based neuroimaging research of cognitive function in resource-poor rural communities

    WHAT IS ENTROPY?

    No full text

    Hemodynamic response to burst-suppressed and discontinuous electroencephalography activity in infants with hypoxic ischemic encephalopathy

    No full text
    Burst suppression (BS) is an electroencephalographic state associated with a profound inactivation of the brain. BS and pathological discontinuous electroencephalography (EEG) are often observed in term-age infants with neurological injury and can be indicative of a poor outcome and lifelong disability. Little is known about the neurophysiological mechanisms of BS or how the condition relates to the functional state of the neonatal brain. We used simultaneous EEG and diffuse optical tomography (DOT) to investigate whether bursts of EEG activity in infants with hypoxic ischemic encephalopathy are associated with an observable cerebral hemodynamic response. We were able to identify significant changes in concentration of both oxy and deoxyhemoglobin that are temporally correlated with EEG bursts and present a relatively consistent morphology across six infants. Furthermore, DOT reveals patient-specific spatial distributions of this hemodynamic response that may be indicative of a complex pattern of cortical activation underlying discontinuous EEG activity that is not readily apparent in scalp EEG

    Selective cortical mapping of biological motion processing in young infants

    No full text
    How specialized is the infant brain for perceiving the facial and manual movements displayed by others? Although there is evidence for a network of regions that process biological motion in adults--including individuated responses to the perception of differing facial and manual movements--how this cortical specialization develops remains unknown. We used functional near-infrared spectroscopy [Lloyd-Fox, S., Blasi, A., & Elwell, C. Illuminating the developing brain: The past, present and future of functional near-infrared spectroscopy. Neuroscience and Biobehavioral Reviews, 34, 269-284, 2010] to investigate the ability of 5-month-old infants to process differing biological movements. Infants watched videos of adult actors moving their hands, their mouth, or their eyes, all in contrast to nonbiological mechanical movements, while hemodynamic responses were recorded over the their frontal and temporal cortices. We observed different regions of the frontal and temporal cortex that responded to these biological movements and different patterns of cortical activation according to the type of movement watched. From an early age, our brains selectively respond to biologically relevant movements, and further, selective patterns of regional specification to different cues occur within what may correspond to a developing "social brain" network. These findings illuminate hitherto undocumented maps of selective cortical activation to biological motion processing in the early postnatal development of the human brain
    corecore