8 research outputs found

    The Role and Limitations of 18-Fluoro-2-deoxy-d-glucose Positron Emission Tomography (FDG-PET) Scan and Computerized Tomography (CT) in Restaging Patients with Hepatic Colorectal Metastases Following Neoadjuvant Chemotherapy: Comparison with Operative and Pathological Findings

    Get PDF
    BACKGROUND: Recent data confirmed the importance of 18-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) in the selection of patients with colorectal hepatic metastases for surgery. Neoadjuvant chemotherapy before hepatic resection in selected cases may improve outcome. The influence of chemotherapy on the sensitivity of FDG-PET and CT in detecting liver metastases is not known. METHODS: Patients were assigned to either neoadjuvant treatment or immediate hepatic resection according to resectability, risk of recurrence, extrahepatic disease, and patient preference. Two-thirds of them underwent FDG-PET/CT before chemotherapy; all underwent preoperative contrast-enhanced CT and FDG-PET/CT. Those without extensive extrahepatic disease underwent open exploration and resection of all the metastases according to original imaging findings. Operative and pathological findings were compared to imaging results. RESULTS: Twenty-seven patients (33 lesions) underwent immediate hepatic resection (group 1), and 48 patients (122 lesions) received preoperative neoadjuvant chemotherapy (group 2). Sensitivity of FDG-PET and CT in detecting colorectal (CR) metastases was significantly higher in group 1 than in group 2 (FDG-PET: 93.3 vs 49%, P < 0.0001; CT: 87.5 vs 65.3, P = 0.038). CT had a higher sensitivity than FDG-PET in detecting CR metastases following neoadjuvant therapy (65.3 vs 49%, P < 0.0001). Sensitivity of FDG-PET, but not of CT, was lower in group 2 patients whose chemotherapy included bevacizumab compared to patients who did not receive bevacizumab (39 vs 59%, P = 0.068). CONCLUSIONS: FDG-PET/CT sensitivity is lowered by neoadjuvant chemotherapy. CT is more sensitive than FDG-PET in detecting CR metastases following neoadjuvant therapy. Surgical decision-making requires information from multiple imaging modalities and pretreatment findings. Baseline FDG-PET and CT before neoadjuvant therapy are mandatory

    The MOBI-Kids study protocol: Challenges in assessing childhood and adolescent exposure to electromagnetic fields from wireless telecommunication technologies and possible association with brain tumor risk

    No full text
    The rapid increase in mobile phone use in young people has generated concern about pos- sible health effects of exposure to radiofrequency (RF) and extremely low frequency (ELF) electromagnetic fields (EMF). MOBI-Kids, a multinational case-control study, investigates the potential effects of childhood and adolescent exposure to EMF from mobile communi- cations technologies on brain tumor risk in 14 countries. The study, which aims to include approximately 1,000 brain tumor cases aged 10-24 years and two individually matched controls for each case, follows a common protocol and builds upon the methodological experience of the INTERPHONE study. The design and conduct of a study on EMF expo- sure and brain tumor risk in young people in a large number of countries is complex and poses methodological challenges.This manuscript discusses the design of MOBI-Kids and describes the challenges and approaches chosen to address them, including: (1) the choice of controls operated for suspected appendicitis, to reduce potential selection bias related to lowresponse rates among population controls; (2) investigating a young study population spanning a relatively wide age range; (3) conducting a large, multinational epidemiologi- cal study, while adhering to increasingly stricter ethics requirements; (4) investigating a rare and potentially fatal disease; and (5) assessing exposure to EMF from communication technologies. Our experience in thus far developing and implementing the study protocol indicates that MOBI-Kids is feasible and will generate results that will contribute to the understanding of potential brain tumor risks associated with use of mobile phones and other wireless communications technologies among young people. © 2014
    corecore