32 research outputs found

    Sport et insuffisance respiratoire chronique

    No full text
    Effets bénéfiques de l'exercice physique et du réentraßnement à l'effort chez les patients atteints de maladies respiratoires chroniques telles que l'asthme, la bronchopneumopathie chronique obstructive ou la mucoviscidose

    Hémodynamique pulmonaire lors de l'exercice en créneaux chez la sujet sain et le patient atteint de bronchopneumopathie chronique obstructive

    No full text
    Les patients porteurs de broncho-pneumopathie chronique obstructive (BPCO) constituent un enjeu majeur en terme de santĂ© publique, tant par le nombre Ă©levĂ© de personnes concernĂ©es que par la gravitĂ© potentielle de leur atteinte respiratoire. Ainsi, les consĂ©quences Ă©conomiques, sociales et professionnelles du handicap engendrĂ© par l'insuffisance ventilatoire reflĂštent largement l'importance de sa prise en charge.Parmi les moyens mis en Ɠuvre pour la prise en charge de cette pathologie, le rĂ©entraĂźnement Ă  l'effort en reprĂ©sente une des pierres angulaires. Il permet de maniĂšre gĂ©nĂ©rale de rĂ©duire la dyspnĂ©e d'effort induite par la maladie primaire et pĂ©rennisĂ©e par le dĂ©conditionnement qui s'en suit (maladie secondaire) : pour une mĂȘme charge de travail, aprĂšs rĂ©entraĂźnement, l'effort sera moins coĂ»teux sur le plan ventilatoire mais aussi cardiaque. Il est maintenant communĂ©ment admis qu'un entraĂźnement comprenant 3 sĂ©ances par semaine Ă  raison de 30 minutes par sĂ©ance et pendant 6 semaines est nĂ©cessaire pour obtenir des rĂ©sultats favorables. Il est Ă©galement admis qu'une intensitĂ© Ă©levĂ©e de travail pendant les sĂ©ances d'entraĂźnement apporte un bĂ©nĂ©fice plus important qu'une intensitĂ© modĂ©rĂ©e. Par ailleurs, un rĂ©entraĂźnement comprenant des efforts de type intermittent est souvent mieux tolĂ©rĂ© qu'un exercice continu. Le type d'exercice utilisĂ© dans notre Ă©tude est un exercice intermittent de 30 minutes, alternant des pĂ©riodes de travail Ă  une charge correspondant au seuil ventilatoire 1 (4 minutes de "base") et une minute de travail Ă  une charge correspondant Ă  90% de la puissance maximale tolĂ©rĂ©e par le sujet. Il s'agit donc d'un effort adaptĂ© aux possibilitĂ©s individuelles des sujets. Ceci permet de soutenir l'effort pendant 30 minutes tout en atteignant, en fin d'effort, la frĂ©quence cardiaque maximale obtenue lors d'une Ă©preuve d'effort Ă  charges croissantes, maximale.[...]STRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF

    Aerobic Capacity of Elderly People after a Short 6-week Intermittent Exercise Programme

    No full text
    Background: One of the most debilitating effects of advancing age is the progressive decline in aerobic exercise capacity. To prevent this decrease, exercise prescription has been proved to be effective in compensating for the age-associated decline in maximal oxygen capacity. Methods: 27 healthy sedentary elderly men (10) and women (17) aged 67&#177;7 yr, were involved in a tailored 6-week intermittent exercise programme, with 30 min cycling per session, 3 times a week. One session alternated 4 min at a workload corresponding to the ventilatory threshold (called &#8220;bases&#8221;) and 1 min to a charge corresponding to 90% of the maximum tolerated power of the subjects (called &#8220;peaks&#8221;). This was repeated 6 times during one session. To determine these charges, all subjects underwent a 1-minute-step maximal incremental exercise test to find out their maximal tolerated power, peak oxygen consumption (VO2peak), maximal heart rate, and maximal lactate. A second maximal incremental exercise test was performed after the programme, to compare the different parameters. Results: For the whole group, maximal tolerated power increased from 113&#177;8 watts to 13&#177;9 watts (P < 0.001), VO2 peak increased from 19.8&#177;0.9 ml&#183;kg-1&#183;min-1 to 22.2 &#177;0.9 ml&#183;kg-1&#183;min-1 (P=0.002), maximal heart rate (143&#177;4 vs 144&#177;4 beats&#183;min-1) and maximal lactate (5.4&#177;0.3 vs 5.7&#177;0.3 mmol&#183;L-1) did not change. VO2 at ventilatory threshold increased from 950&#177;57 ml&#183;min-1 to 1095&#177;69 ml&#183;min-1 (P=0.007), and the corresponding power increased from 65&#177;5 watts to 82&#177;6 watts (P < 0.001). Conclusions: Even after a short time training programme (6 weeks), we observed a significant improvement in aerobic capacity, and especially in sub-maximal workloads, which represented, for these subjects, their daily-life capacity

    Maximal aerobic capacity in ageing subjects: actual measurements versus predicted values

    No full text
    We evaluated the impact of selection of reference values on the categorisation of measured maximal oxygen consumption (Vâ€ČO2peak) as “normal” or “abnormal” in an ageing population. We compared measured Vâ€ČO2peak with predicted values and the lower limit of normal (LLN) calculated with five equations. 99 (58 males and 41 females) disease-free subjects aged ≄70 years completed an incremental maximal exercise test on a cycle ergometer. Mean Vâ€ČO2peak was 1.88 L·min−1 in men and 1.26 L·min−1 in women. Vâ€ČO2peak ranged from 89% to 108% of predicted in men, and from 88% to 164% of predicted in women, depending on the reference equation used. The proportion of subjects below the LLN ranged from 5% to 14% in men and 0–22% in women, depending on the reference equation. The LLN was lacking in one study, and was unsuitable for women in another. Most LLNs ranged between 53% and 73% of predicted. Therefore, choosing an 80% cut-off leads to overestimation of the proportion of “abnormal” subjects. To conclude, the proportion of subjects aged ≄70 years with a “low” Vâ€ČO2peak differs markedly according to the chosen reference equations. In clinical practice, it is still relevant to test a sample of healthy volunteers and select the reference equations that better characterise this sample
    corecore