9 research outputs found

    An evaluation of two-channel ChIP-on-chip and DNA methylation microarray normalization strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The combination of chromatin immunoprecipitation with two-channel microarray technology enables genome-wide mapping of binding sites of DNA-interacting proteins (ChIP-on-chip) or sites with methylated CpG di-nucleotides (DNA methylation microarray). These powerful tools are the gateway to understanding gene transcription regulation. Since the goals of such studies, the sample preparation procedures, the microarray content and study design are all different from transcriptomics microarrays, the data pre-processing strategies traditionally applied to transcriptomics microarrays may not be appropriate. Particularly, the main challenge of the normalization of "regulation microarrays" is (i) to make the data of individual microarrays quantitatively comparable and (ii) to keep the signals of the enriched probes, representing DNA sequences from the precipitate, as distinguishable as possible from the signals of the un-enriched probes, representing DNA sequences largely absent from the precipitate.</p> <p>Results</p> <p>We compare several widely used normalization approaches (VSN, LOWESS, quantile, T-quantile, Tukey's biweight scaling, Peng's method) applied to a selection of regulation microarray datasets, ranging from DNA methylation to transcription factor binding and histone modification studies. Through comparison of the data distributions of control probes and gene promoter probes before and after normalization, and assessment of the power to identify known enriched genomic regions after normalization, we demonstrate that there are clear differences in performance between normalization procedures.</p> <p>Conclusion</p> <p>T-quantile normalization applied separately on the channels and Tukey's biweight scaling outperform other methods in terms of the conservation of enriched and un-enriched signal separation, as well as in identification of genomic regions known to be enriched. T-quantile normalization is preferable as it additionally improves comparability between microarrays. In contrast, popular normalization approaches like quantile, LOWESS, Peng's method and VSN normalization alter the data distributions of regulation microarrays to such an extent that using these approaches will impact the reliability of the downstream analysis substantially.</p

    Fasting induces a biphasic adaptive metabolic response in murine small intestine

    Get PDF
    BACKGROUND: The gut is a major energy consumer, but a comprehensive overview of the adaptive response to fasting is lacking. Gene-expression profiling, pathway analysis, and immunohistochemistry were therefore carried out on mouse small intestine after 0, 12, 24, and 72 hours of fasting. RESULTS: Intestinal weight declined to 50% of control, but this loss of tissue mass was distributed proportionally among the gut's structural components, so that the microarrays' tissue base remained unaffected. Unsupervised hierarchical clustering of the microarrays revealed that the successive time points separated into distinct branches. Pathway analysis depicted a pronounced, but transient early response that peaked at 12 hours, and a late response that became progressively more pronounced with continued fasting. Early changes in gene expression were compatible with a cellular deficiency in glutamine, and metabolic adaptations directed at glutamine conservation, inhibition of pyruvate oxidation, stimulation of glutamate catabolism via aspartate and phosphoenolpyruvate to lactate, and enhanced fatty-acid oxidation and ketone-body synthesis. In addition, the expression of key genes involved in cell cycling and apoptosis was suppressed. At 24 hours of fasting, many of the early adaptive changes abated. Major changes upon continued fasting implied the production of glucose rather than lactate from carbohydrate backbones, a downregulation of fatty-acid oxidation and a very strong downregulation of the electron-transport chain. Cell cycling and apoptosis remained suppressed. CONCLUSION: The changes in gene expression indicate that the small intestine rapidly looses mass during fasting to generate lactate or glucose and ketone bodies. Meanwhile, intestinal architecture is maintained by downregulation of cell turnove

    Biologically relevant effects of mRNA amplification on gene expression profiles

    Get PDF
    BACKGROUND: Gene expression microarray technology permits the analysis of global gene expression profiles. The amount of sample needed limits the use of small excision biopsies and/or needle biopsies from human or animal tissues. Linear amplification techniques have been developed to increase the amount of sample derived cDNA. These amplified samples can be hybridised on microarrays. However, little information is available whether microarrays based on amplified and unamplified material yield comparable results. In the present study we compared microarray data obtained from amplified mRNA derived from biopsies of rat cardiac left ventricle and non-amplified mRNA derived from the same organ. Biopsies were linearly amplified to acquire enough material for a microarray experiment. Both amplified and unamplified samples were hybridized to the Rat Expression Set 230 Array of Affymetrix. RESULTS: Analysis of the microarray data showed that unamplified material of two different left ventricles had 99.6% identical gene expression. Gene expression patterns of two biopsies obtained from the same parental organ were 96.3% identical. Similarly, gene expression pattern of two biopsies from dissimilar organs were 92.8% identical to each other. Twenty-one percent of reporters called present in parental left ventricular tissue disappeared after amplification in the biopsies. Those reporters were predominantly seen in the low intensity range. Sequence analysis showed that reporters that disappeared after amplification had a GC-content of 53.7+/-4.0%, while reporters called present in biopsy- and whole LV-samples had an average GC content of 47.8+/-5.5% (P <0.001). Those reporters were also predicted to form significantly more (0.76+/-0.07 versus 0.38+/-0.1) and longer (9.4+/-0.3 versus 8.4+/-0.4) hairpins as compared to representative control reporters present before and after amplification. CONCLUSION: This study establishes that the gene expression profile obtained after amplification of mRNA of left ventricular biopsies is representative for the whole left ventricle of the rat heart. However, specific gene transcripts present in parental tissues were undetectable in the minute left ventricular biopsies. Transcripts that were lost due to the amplification process were not randomly distributed, but had higher GC-content and hairpins in the sequence and were mainly found in the lower intensity range which includes many transcription factors from specific signalling pathways

    Linking microarray reporters with protein functions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The analysis of microarray experiments requires accurate and up-to-date functional annotation of the microarray reporters to optimize the interpretation of the biological processes involved. Pathway visualization tools are used to connect gene expression data with existing biological pathways by using specific database identifiers that link reporters with elements in the pathways.</p> <p>Results</p> <p>This paper proposes a novel method that aims to improve microarray reporter annotation by BLASTing the original reporter sequences against a species-specific EMBL subset, that was derived from and crosslinked back to the highly curated UniProt database. The resulting alignments were filtered using high quality alignment criteria and further compared with the outcome of a more traditional approach, where reporter sequences were BLASTed against EnsEMBL followed by locating the corresponding protein (UniProt) entry for the high quality hits. Combining the results of both methods resulted in successful annotation of > 58% of all reporter sequences with UniProt IDs on two commercial array platforms, increasing the amount of Incyte reporters that could be coupled to Gene Ontology terms from 32.7% to 58.3% and to a local GenMAPP pathway from 9.6% to 16.7%. For Agilent, 35.3% of the total reporters are now linked towards GO nodes and 7.1% on local pathways.</p> <p>Conclusion</p> <p>Our methods increased the annotation quality of microarray reporter sequences and allowed us to visualize more reporters using pathway visualization tools. Even in cases where the original reporter annotation showed the correct description the new identifiers often allowed improved pathway and Gene Ontology linking. These methods are freely available at http://www.bigcat.unimaas.nl/public/publications/Gaj_Annotation/.</p

    Fasting induces a biphasic adaptive metabolic response in murine small intestine

    No full text
    Abstract Background The gut is a major energy consumer, but a comprehensive overview of the adaptive response to fasting is lacking. Gene-expression profiling, pathway analysis, and immunohistochemistry were therefore carried out on mouse small intestine after 0, 12, 24, and 72 hours of fasting. Results Intestinal weight declined to 50% of control, but this loss of tissue mass was distributed proportionally among the gut's structural components, so that the microarrays' tissue base remained unaffected. Unsupervised hierarchical clustering of the microarrays revealed that the successive time points separated into distinct branches. Pathway analysis depicted a pronounced, but transient early response that peaked at 12 hours, and a late response that became progressively more pronounced with continued fasting. Early changes in gene expression were compatible with a cellular deficiency in glutamine, and metabolic adaptations directed at glutamine conservation, inhibition of pyruvate oxidation, stimulation of glutamate catabolism via aspartate and phosphoenolpyruvate to lactate, and enhanced fatty-acid oxidation and ketone-body synthesis. In addition, the expression of key genes involved in cell cycling and apoptosis was suppressed. At 24 hours of fasting, many of the early adaptive changes abated. Major changes upon continued fasting implied the production of glucose rather than lactate from carbohydrate backbones, a downregulation of fatty-acid oxidation and a very strong downregulation of the electron-transport chain. Cell cycling and apoptosis remained suppressed. Conclusion The changes in gene expression indicate that the small intestine rapidly looses mass during fasting to generate lactate or glucose and ketone bodies. Meanwhile, intestinal architecture is maintained by downregulation of cell turnover.</p

    Adverse outcome pathways: opportunities, limitations and open questions

    No full text
    corecore