8 research outputs found

    Developmental morphology of branching flowers in Nymphaea prolifera

    Get PDF
    Nymphaea and Nuphar (Nymphaeaceae) share an extra-axillary mode of floral inception in the shoot apical meristem (SAM). Some leaf sites along the ontogenetic spiral are occupied by floral primordia lacking a subtending bract. This pattern of flower initiation in leaf sites is repeated inside branching flowers of Nymphaea prolifera (Central and South America). Instead of fertile flowers this species usually produces sterile tuberiferous flowers that act as vegetative propagules. N. prolifera changes the meristem identity from reproductive to vegetative or vice versa repeatedly. Each branching flower first produces some perianth-like leaves, then it switches back to the vegetative meristem identity of the SAM with the formation of foliage leaves and another set of branching flowers. This process is repeated up to three times giving rise to more than 100 vegetative propagules. The developmental morphology of the branching flowers of N. prolifera is described using both microtome sections and scanning electron microscop

    Developmental morphology of branching flowers in Nymphaea prolifera

    Full text link
    Nymphaea and Nuphar (Nymphaeaceae) share an extra-axillary mode of floral inception in the shoot apical meristem (SAM). Some leaf sites along the ontogenetic spiral are occupied by floral primordia lacking a subtending bract. This pattern of flower initiation in leaf sites is repeated inside branching flowers of Nymphaea prolifera (Central and South America). Instead of fertile flowers this species usually produces sterile tuberiferous flowers that act as vegetative propagules. N. prolifera changes the meristem identity from reproductive to vegetative or vice versa repeatedly. Each branching flower first produces some perianth-like leaves, then it switches back to the vegetative meristem identity of the SAM with the formation of foliage leaves and another set of branching flowers. This process is repeated up to three times giving rise to more than 100 vegetative propagules. The developmental morphology of the branching flowers of N. prolifera is described using both microtome sections and scanning electron microscop

    Stonesia ghoguei, Peculiar Morphology of a New Cameroonian Species (Podostemaceae, Podostemoideae)

    No full text
    Volume: 19Start Page: 102End Page: 11

    How to get off the mismatch at the generic rank in African Podostemaceae?

    Full text link
    The Podostemaceae are highly enigmatic plants which are restricted to submerged river-rock habitats. The availability of new material of nine taxa from continental Africa prompted this new study. Five species belonging to the genera Dicraeanthus, Leiothylax, Letestuella, Macropodiella, and Stonesia and another four species of the large genera Inversodicraea sensu stricto and Ledermanniella sensu stricto have been analysed for the first time. New anatomical and developmental data are described and illustrated by use of microtome sections and scanning electron microscopy. In parallel, phylogenetic analyses of all available sequence data of African Podostemaceae have been conducted using three plastid markers (matK, trnD-trnT, rpoB-trnC). Inversodicraea cf. bosii appears basal within the continental African clade. The remaining taxa are distributed in three, rather poorly supported, major clades which are consistent with their morphology: (1) the Inversodicraea clade is characterised by stem scales and contains members of the former Ledermanniella subg. Phyllosoma with either pollen-monads or dyads; (2) the Ledermanniella-Monad group consisting of Leiothylax, Letestuella, Macropodiella, Stonesia, and Ledermanniella species—all taxa without stem scales but showing pollen as single grains, with Monandriella linearifolia being basal to this clade; (3) the Ledermanniella-Dyad clade including Djinga, Dicraeanthus, and Ledermanniella species without stem scales but with pollen dyads. To reduce the polyphyly of Ledermanniella sensu lato (i.e. sensu C. Cusset) we propose restricting Ledermanniella to the species of the former subgenus Ledermanniella, resurrecting Monandriella as monotypic genus, and accepting the genus name Inversodicraea for members of Ledermanniella subg. Phyllosoma
    corecore