23 research outputs found

    Exogenous ghrelin attenuates endotoxin fever in rats

    Get PDF
    AbstractGhrelin is a gut-derived peptide that plays a role in energy homeostasis. Recent studies have implicated ghrelin in systemic inflammation, showing increased plasma ghrelin levels after endotoxin (lipopolysaccharide, LPS) administration. The aims of this study were (1) to test the hypothesis that ghrelin administration affects LPS-induced fever; and (2) to assess the putative effects of ghrelin on plasma corticosterone secretion and preoptic region prostaglandin (PG) E2 levels in euthermic and febrile rats. Rats were implanted with a temperature datalogger capsule in the peritoneal cavity to record body core temperature. One week later, they were challenged with LPS (50μg/kg, intraperitoneal, i.p.) alone or combined with ghrelin (0.1mg/kg, i.p.). In another group of rats, plasma corticosterone and preoptic region PGE2 levels were measured 2h after injections. In euthermic animals, systemic administration of ghrelin failed to elicit any thermoregulatory effect, and caused no significant changes in basal plasma corticosterone and preoptic region PGE2 levels. LPS caused a typical febrile response, accompanied by increased plasma corticosterone and preoptic PGE2 levels. When LPS administration was combined with ghrelin fever was attenuated, corticosterone secretion further increased, and the elevated preoptic PGE2 levels were relatively reduced, but a correlation between these two variables (corticosterone and PGE2) failed to exist. The present data add ghrelin to the neurochemical milieu controlling the immune/thermoregulatory system acting as an antipyretic molecule. Moreover, our findings also support the notion that ghrelin attenuates fever by means of a direct effect of the peptide reducing PGE2 production in the preoptic region

    Hydrogen sulfide inhibits preoptic prostaglandin E2 production during endotoxemia

    Get PDF
    AbstractHydrogen sulfide (H2S) is a gaseous neuromodulator endogenously produced in the brain by the enzyme cystathionine β-synthase (CBS). We tested the hypothesis that H2S acts within the anteroventral preoptic region of the hypothalamus (AVPO) modulating the production of prostaglandin (PG) E2 (the proximal mediator of fever) and cyclic AMP (cAMP). To this end, we recorded deep body temperature (Tb) of rats before and after pharmacological modulation of the CBS–H2S system combined or not with lipopolysaccharide (LPS) exposure, and measured the levels of H2S, cAMP, and PGE2 in the AVPO during systemic inflammation. Intracerebroventricular (icv) microinjection of aminooxyacetate (AOA, a CBS inhibitor; 100pmol) did not affect basal PGE2 production and Tb, but enhanced LPS-induced PGE2 production and fever, indicating that endogenous H2S plays an antipyretic role. In agreement, icv microinjection of a H2S donor (Na2S; 260nmol) reduced the LPS-induced PGE2 production and fever. Interestingly, we observed that the AVPO levels of H2S were decreased following the immunoinflammatory challenge. Furthermore, fever was associated with decreased levels of AVPO cAMP and increased levels of AVPO PGE2. The LPS-induced decreased levels of cAMP were reduced to a lesser extent by the H2S donor. The LPS-induced PGE2 production was potentiated by AOA (the CBS inhibitor) and inhibited by the H2S donor. Our data are consistent with the notion that the gaseous messenger H2S synthesis is downregulated during endotoxemia favoring PGE2 synthesis and lowering cAMP levels in the preoptic hypothalamus

    Hypothermia during endotoxemic shock in female mice lacking inducible nitric oxide synthase

    No full text
    The present study was undertaken to evaluate: (1) whether lipopolysaccharide LPS-incluced hypothermic responses may be altered during two estrous cycle phases, proestrus and diestrus, and after ovariectomy, followed by hormonal supplementation and (2) whether nitric oxide (NO) plays a role on LPS-induced hypothermia responses in female mice. Experiments were performed on adult female wild-type (WT) C57BL and inducible NO synthase knockout (KO) mice weighing 18 to 30 g. Endotoxemia was induced by intraperitoneal LIPS administration from Escherichia coli at a nonlethal dose of 10 mg/kg, and body temperature was measured by biotelemetry. Hormonal replacement was performed in ovariectomized mice through 17 beta-estradiol Silastic capsules (100 mu g) and s.c. injection of progesterone (0.5 mg per animal). We observed that during the diestrus phase, mice presented more intensive hypothermia than during proestrus phase, and hormonal supplementation with 17 beta-estradiol and progesterone attenuated hypothermia in ovariectomized mice. During diestrus and ovariectomy, KO mice had higher hypothermic response when compared with the WT group. During proestrus, the lack of statistical difference between KO and WT mice could be consequent of lower ovarian hormones plasma levels. After hormonal replacement, hypothermia was reverted in KO groups probably because of higher ovarian hormonal levels. In summary, the results demonstrated that NO release by inducible NO synthase has an important thermoregulatory role in LPS-incluced hypothermia in female mice. Besides, this involvement is directly dependent on the presence of ovarian hormones and their respective levels

    Gaseous neurotransmitters and their role in anapyrexia

    No full text
    Mammals keep their body temperature (Tb) relatively constant even under a wide range of ambient temperature variation. However, in some particular situations it may be beneficial to increase or to decrease Tb. For instance, under hypoxic conditions, a regulated drop in Tb (anapyrexia) takes place which has been reported to be crucial for survival in a number of different species. This review highlights major advances in the research about nitric oxide (NO) and carbon monoxide (CO-where data are relatively less abundant), before focusing on the role played by these gaseous neuromediators in thermoregulation, under the conditions of euthermia and anapyrexia. Available data are consistent with the notion that both NO and CO, acting on the CNS, participate in thermoregulation, with NO decreasing Tb and CO increasing it. However further studies are required before definitive conclusions can be made as to their physiological mechanisms of action

    Role of l

    No full text

    Increased nitric oxide plasma concentration in dogs with naturally acquired chronic renal disease

    No full text
    ABSTRACT: This study aimed to determine the amount of plasma nitric oxide in clinically stable dogs at different stages of chronic kidney disease (CKD). Five groups of dogs were studied, aged from 4 to 18, comprising of a control group composed of healthy animals (control n=17), group CKD stage 1 (DRC-1, n=12), group CKD stage 2 (CKD-2, n=10) group, CKD stages 3 (CRD-3, n=13) and Group CKD stage 4 (DRC-4, n=10). Dogs with CKD were clinically stable and received no treatment. Two blood samples were collected at 24 hours intervals (repeated measures) to obtain serum and plasma. The serum creatinine values were used to classify dogs as CG, CKD-1, CKD-2, CKD-3 and CKD-4, and were (1.02±0.02mg/dL), (1.07±0.04mg/dL), (1.81±0.03mg/dL), (3.40±0.15mg/dL) and (6.00±0.20mg/dL) respectively. The determination of nitric oxide (NO) was performed by dosing nitrate/nitrite indirectly, and used for measurement of nitrate according to the NO/ozone chemiluminescence. The data were submitted to ANOVA for nonparametric analysis(Kruskal-Wallis) (P<0.05). The concentration of plasmatic NO did not differ significantly among GC (10.81±0.51μM), CKD-1 (15.49±1.97μM) and CKD-2 (19.83±3.31μM) groups. The plasma concentration of CKD-3 (17.02±1.73μM) and CKD-4 (83.56±13.63μM) was significantly higher compared with healthy dogs. In conclusion, the NO plasma concentration can increase in dogs with CKD and become significantly higher in stage 3 and 4 dogs
    corecore