2 research outputs found

    Statistical mechanics far from equilibrium: prediction and test for a sheared system

    Get PDF
    We report the complete statistical treatment of a system of particles interacting via Newtonian forces in continuous boundary-driven flow, far from equilibrium. By numerically time-stepping the force-balance equations of a model fluid we measure occupancies and transition rates in simulation. The high-shear-rate simulation data verify the invariant quantities predicted by our statistical theory, thus demonstrating that a class of non-equilibrium steady states of matter, namely sheared complex fluids, is amenable to statistical treatment from first principles.Comment: 4 pages plus a 3-page pdf supplemen

    Nonequilibrium statistical mechanics of shear flow: invariant quantities and current relations

    Full text link
    In modeling nonequilibrium systems one usually starts with a definition of the microscopic dynamics, e.g., in terms of transition rates, and then derives the resulting macroscopic behavior. We address the inverse question for a class of steady state systems, namely complex fluids under continuous shear flow: how does an externally imposed shear current affect the microscopic dynamics of the fluid? The answer can be formulated in the form of invariant quantities, exact relations for the transition rates in the nonequilibrium steady state, as discussed in a recent letter [A. Baule and R. M. L. Evans, Phys. Rev. Lett. 101, 240601 (2008)]. Here, we present a more pedagogical account of the invariant quantities and the theory underlying them, known as the nonequilibrium counterpart to detailed balance (NCDB). Furthermore, we investigate the relationship between the transition rates and the shear current in the steady state. We show that a fluctuation relation of the Gallavotti-Cohen type holds for systems satisfying NCDB.Comment: 24 pages, 11 figure
    corecore