58,549 research outputs found
A Note on the Relativistic Covariance of the Cyclic Relations
It is shown that the Evans-Vigier modified electrodynamics is compatible with
the Relativity Theory.Comment: ReVTeX file, 14pp., no figure
Status of Lattice QCD
Significant progress has recently been achieved in the lattice gauge theory
calculations required for extracting the fundamental parameters of the standard
model from experiment. Recent lattice determinations of such quantities as the
kaon parameter, the mass of the quark, and the strong coupling constant
have produced results and uncertainties as good or better than the best
conventional determinations. Many other calculations crucial to extracting the
fundamental parameters of the standard model from experimental data are
undergoing very active development. I review the status of such applications of
lattice QCD to standard model phenomenology, and discuss the prospects for the
near future.Comment: 20 pages, 8 embedded figures, uuencoded, 2 missing figures. (Talk
presented at the Lepton-Photon Symposium, Cornell University, Aug. 10-15,
1993.
Smilansky's model of irreversible quantum graphs, II: the point spectrum
In the model suggested by Smilansky one studies an operator describing the
interaction between a quantum graph and a system of K one-dimensional
oscillators attached at different points of the graph. This paper is a
continuation of our investigation of the case K>1. For the sake of simplicity
we consider K=2, but our argument applies to the general situation. In this
second paper we apply the variational approach to the study of the point
spectrum.Comment: 18 page
Role of Metastable States in Phase Ordering Dynamics
We show that the rate of separation of two phases of different densities
(e.g. gas and solid) can be radically altered by the presence of a metastable
intermediate phase (e.g. liquid). Within a Cahn-Hilliard theory we study the
growth in one dimension of a solid droplet from a supersaturated gas. A moving
interface between solid and gas phases (say) can, for sufficient (transient)
supersaturation, unbind into two interfaces separated by a slab of metastable
liquid phase. We investigate the criteria for unbinding, and show that it may
strongly impede the growth of the solid phase.Comment: 4 pages, Latex, Revtex, epsf. Updated two reference
Smilansky's model of irreversible quantum graphs, I: the absolutely continuous spectrum
In the model suggested by Smilansky one studies an operator describing the
interaction between a quantum graph and a system of one-dimensional
oscillators attached at several different points in the graph. The present
paper is the first one in which the case is investigated. For the sake of
simplicity we consider K=2, but our argument is of a general character. In this
first of two papers on the problem, we describe the absolutely continuous
spectrum. Our approach is based upon scattering theory
Diffusive Evolution of Stable and Metastable Phases II: Theory of Non-Equilibrium Behaviour in Colloid-Polymer Mixtures
By analytically solving some simple models of phase-ordering kinetics, we
suggest a mechanism for the onset of non-equilibrium behaviour in
colloid-polymer mixtures. These mixtures can function as models of atomic
systems; their physics therefore impinges on many areas of thermodynamics and
phase-ordering. An exact solution is found for the motion of a single, planar
interface separating a growing phase of uniform high density from a
supersaturated low density phase, whose diffusive depletion drives the
interfacial motion. In addition, an approximate solution is found for the
one-dimensional evolution of two interfaces, separated by a slab of a
metastable phase at intermediate density. The theory predicts a critical
supersaturation of the low-density phase, above which the two interfaces become
unbound and the metastable phase grows ad infinitum. The growth of the stable
phase is suppressed in this regime.Comment: 27 pages, Latex, eps
The static and dynamic conductivity of warm dense Aluminum and Gold calculated within a density functional approach
The static resistivity of dense Al and Au plsmas are calculated where all the
needed inputs are obtained from density functional theory (DFT). This is used
as input for a study of the dynamic conductivity. These calculations involve a
self-consistent determination of (i) the equation of state (EOS) and the
ionization balance, (ii) evaluation of the ion-ion, and ion-electron
pair-distribution functions, (iii) Determination of the scattering amplitudes,
and finally the conductivity. We present data for the static resistivity of Al
for compressions 0.1-2.0, and in the temperature range T= 0.1 - 10 eV. Results
for Au in the same temperature range and for compressions 0.1-1.0 is also
given. In determining the dynamic conductivity for a range of frequencies
consistent with standard laser probes, a knowledge of the electronic
eigenstates and occupancies of Al- or Au plasma becomes necessary. They are
calculated using a neutral-pseudoatom model. We examine a number of
first-principles approaches to the optical conductivity, including many-body
perturbation theory, molecular-dynamics evaluations, and simplified
time-dependent DFT. The modification to the Drude conductivity that arises from
the presence of shallow bound states in typical Al-plasmas is examined and
numerical results are given at the level of the Fermi Golden rule and an
approximate form of time-dependent DFT.Comment: 5 figures, Latex original. Cross-referencced to PLASMA PHYSIC
- …