61,258 research outputs found

    Proposed Distributed Feedback Crystal Cavities for X-Ray Lasers

    Get PDF
    The strong interest in the coherent generation and guiding of x rays is well known. Many papers have recently appeared treating different concepts of stimulated x-ray emissions, and x-ray guiding in thin films was achieved. Crystals were suggested as end reflectors to generate feedback. Here we suggest a different type of cavity using zeolite crystals that would guide the emitted x-rays and at the same time generate the necessary feedback for self-sustained oscillation

    To what extent does severity of loneliness vary among different mental health diagnostic groups: A cross-sectional study.

    Get PDF
    Loneliness is a common and debilitating problem in individuals with mental health disorders. However, our knowledge on severity of loneliness in different mental health diagnostic groups and factors associated with loneliness is poor, thus limiting the ability to target and improve loneliness interventions. The current study investigated the association between diagnoses and loneliness and explored whether psychological and social factors were related to loneliness. This study employed a cross-sectional design using data from a completed study which developed a measure of social inclusion. It included 192 participants from secondary, specialist mental health services with a primary diagnosis of psychotic disorders (n = 106), common mental disorders (n = 49), or personality disorders (n = 37). The study explored differences in loneliness between these broad diagnostic groups, and the relationship to loneliness of: affective symptoms, social isolation, perceived discrimination, and internalized stigma. The study adhered to the STROBE checklist for observational research. People with common mental disorders (MD = 3.94, CI = 2.15 to 5.72, P < 0.001) and people with personality disorders (MD = 4.96, CI = 2.88 to 7.05, P < 0.001) reported higher levels of loneliness compared to people with psychosis. These differences remained significant after adjustment for all psychological and social variables. Perceived discrimination and internalized stigma were also independently associated with loneliness and substantially contributed to a final explanatory model. The severity of loneliness varies between different mental health diagnostic groups. Both people with common mental disorders and personality disorders reported higher levels of loneliness than people with psychosis. Addressing perceived mental health discrimination and stigma may help to reduce loneliness

    Generalized fluctuation relation and effective temperatures in a driven fluid

    Full text link
    By numerical simulation of a Lennard-Jones like liquid driven by a velocity gradient \gamma we test the fluctuation relation (FR) below the (numerical) glass transition temperature T_g. We show that, in this region, the FR deserves to be generalized introducing a numerical factor X(T,\gamma)<1 that defines an ``effective temperature'' T_{FR}=T/X. On the same system we also measure the effective temperature T_{eff}, as defined from the generalized fluctuation-dissipation relation, and find a qualitative agreement between the two different nonequilibrium temperatures.Comment: Version accepted for publication on Phys.Rev.E; major changes, 1 figure adde

    On the Fluctuation Relation for Nose-Hoover Boundary Thermostated Systems

    Full text link
    We discuss the transient and steady state fluctuation relation for a mechanical system in contact with two deterministic thermostats at different temperatures. The system is a modified Lorentz gas in which the fixed scatterers exchange energy with the gas of particles, and the thermostats are modelled by two Nos\'e-Hoover thermostats applied at the boundaries of the system. The transient fluctuation relation, which holds only for a precise choice of the initial ensemble, is verified at all times, as expected. Times longer than the mesoscopic scale, needed for local equilibrium to be settled, are required if a different initial ensemble is considered. This shows how the transient fluctuation relation asymptotically leads to the steady state relation when, as explicitly checked in our systems, the condition found in [D.J. Searles, {\em et al.}, J. Stat. Phys. 128, 1337 (2007)], for the validity of the steady state fluctuation relation, is verified. For the steady state fluctuations of the phase space contraction rate \zL and of the dissipation function \zW, a similar relaxation regime at shorter averaging times is found. The quantity \zW satisfies with good accuracy the fluctuation relation for times larger than the mesoscopic time scale; the quantity \zL appears to begin a monotonic convergence after such times. This is consistent with the fact that \zW and \zL differ by a total time derivative, and that the tails of the probability distribution function of \zL are Gaussian.Comment: Major revision. Fig.10 was added. Version to appear in Journal of Statistical Physic

    Note on the Kaplan-Yorke dimension and linear transport coefficients

    Full text link
    A number of relations between the Kaplan-Yorke dimension, phase space contraction, transport coefficients and the maximal Lyapunov exponents are given for dissipative thermostatted systems, subject to a small external field in a nonequilibrium stationary state. A condition for the extensivity of phase space dimension reduction is given. A new expression for the transport coefficients in terms of the Kaplan-Yorke dimension is derived. Alternatively, the Kaplan-Yorke dimension for a dissipative macroscopic system can be expressed in terms of the transport coefficients of the system. The agreement with computer simulations for an atomic fluid at small shear rates is very good.Comment: 12 pages, 5 figures, submitted to J. Stat. Phy

    Dynamics of a disordered, driven zero range process in one dimension

    Get PDF
    We study a driven zero range process which models a closed system of attractive particles that hop with site-dependent rates and whose steady state shows a condensation transition with increasing density. We characterise the dynamical properties of the mass fluctuations in the steady state in one dimension both analytically and numerically and show that the transport properties are anomalous in certain regions of the density-disorder plane. We also determine the form of the scaling function which describes the growth of the condensate as a function of time, starting from a uniform density distribution.Comment: Revtex4, 5 pages including 2 figures; Revised version; To appear in Phys. Rev. Let

    Factorised Steady States in Mass Transport Models

    Get PDF
    We study a class of mass transport models where mass is transported in a preferred direction around a one-dimensional periodic lattice and is globally conserved. The model encompasses both discrete and continuous masses and parallel and random sequential dynamics and includes models such as the Zero-range process and Asymmetric random average process as special cases. We derive a necessary and sufficient condition for the steady state to factorise, which takes a rather simple form.Comment: 6 page

    Nanoscale surface relaxation of a membrane stack

    Full text link
    Recent measurements of the short-wavelength (~ 1--100 nm) fluctuations in stacks of lipid membranes have revealed two distinct relaxations: a fast one (decay rate of ~ 0.1 ns^{-1}), which fits the known baroclinic mode of bulk lamellar phases, and a slower one (~ 1--10 \mu s^{-1}) of unknown origin. We show that the latter is accounted for by an overdamped capillary mode, depending on the surface tension of the stack and its anisotropic viscosity. We thereby demonstrate how the dynamic surface tension of membrane stacks could be extracted from such measurements.Comment: 4 page

    Criterion for phase separation in one-dimensional driven systems

    Get PDF
    A general criterion for the existence of phase separation in driven one-dimensional systems is proposed. It is suggested that phase separation is related to the size dependence of the steady-state currents of domains in the system. A quantitative criterion for the existence of phase separation is conjectured using a correspondence made between driven diffusive models and zero-range processes. Several driven diffusive models are discussed in light of the conjecture
    • 

    corecore