39,150 research outputs found

    Spontaneous Symmetry Breaking in a Non-Conserving Two-Species Driven Model

    Full text link
    A two species particle model on an open chain with dynamics which is non-conserving in the bulk is introduced. The dynamical rules which define the model obey a symmetry between the two species. The model exhibits a rich behavior which includes spontaneous symmetry breaking and localized shocks. The phase diagram in several regions of parameter space is calculated within mean-field approximation, and compared with Monte-Carlo simulations. In the limit where fluctuations in the number of particles in the system are taken to zero, an exact solution is obtained. We present and analyze a physical picture which serves to explain the different phases of the model

    Phase-Space Metric for Non-Hamiltonian Systems

    Full text link
    We consider an invariant skew-symmetric phase-space metric for non-Hamiltonian systems. We say that the metric is an invariant if the metric tensor field is an integral of motion. We derive the time-dependent skew-symmetric phase-space metric that satisfies the Jacobi identity. The example of non-Hamiltonian systems with linear friction term is considered.Comment: 12 page

    Rigorous results on spontaneous symmetry breaking in a one-dimensional driven particle system

    Full text link
    We study spontaneous symmetry breaking in a one-dimensional driven two-species stochastic cellular automaton with parallel sublattice update and open boundaries. The dynamics are symmetric with respect to interchange of particles. Starting from an empty initial lattice, the system enters a symmetry broken state after some time T_1 through an amplification loop of initial fluctuations. It remains in the symmetry broken state for a time T_2 through a traffic jam effect. Applying a simple martingale argument, we obtain rigorous asymptotic estimates for the expected times ~ L ln(L) and ln() ~ L, where L is the system size. The actual value of T_1 depends strongly on the initial fluctuation in the amplification loop. Numerical simulations suggest that T_2 is exponentially distributed with a mean that grows exponentially in system size. For the phase transition line we argue and confirm by simulations that the flipping time between sign changes of the difference of particle numbers approaches an algebraic distribution as the system size tends to infinity.Comment: 23 pages, 7 figure

    Magnetic Catalysis in AdS4

    Full text link
    We study the formation of fermion condensates in Anti de Sitter space. In particular, we describe a novel version of magnetic catalysis that arises for fermions in asymptotically AdS4 geometries which cap off in the infra-red with a hard wall. We show that the presence of a magnetic field induces a fermion condensate in the bulk that spontaneously breaks CP symmetry. From the perspective of the dual boundary theory, this corresponds to a strongly coupled version of magnetic catalysis in d=2+1.Comment: 22 pages, 4 figures. v2: References added, factors of 2 corrected, extra comments added in appendix. v3: extra comments about fermion modes in a hard wall background. v4: A final factor of

    Influence of Capillary Condensation on the Near-Critical Solvation Force

    Full text link
    We argue that in a fluid, or magnet, confined by adsorbing walls which favour liquid, or (+) phase, the solvation (Casimir) force in the vicinity of the critical point is strongly influenced by capillary condensation which occurs below the bulk critical temperature T_c. At T slightly below and above T_c, a small bulk field h<0, which favours gas, or (-) phase, leads to residual condensation and a solvation force which is much more attractive (at the same large wall separation) than that found exactly at the critical point. Our predictions are supported by results obtained from density-matrix renormalization-group calculations in a two-dimensional Ising strip subject to identical surface fields.Comment: 4 Pages, RevTeX, and 3 figures include

    Thermo-optic noise in coated mirrors for high-precision optical measurements

    Get PDF
    Thermal fluctuations in the coatings used to make high-reflectors are becoming significant noise sources in precision optical measurements and are particularly relevant to advanced gravitational wave detectors. There are two recognized sources of coating thermal noise, mechanical loss and thermal dissipation. Thermal dissipation causes thermal fluctuations in the coating which produce noise via the thermo-elastic and thermo-refractive mechanisms. We treat these mechanisms coherently, give a correction for finite coating thickness, and evaluate the implications for Advanced LIGO

    Fossil lizards from the Jurassic Kota Formation of India

    Get PDF
    • …
    corecore