6,595 research outputs found

    The development of the skull of the Egyptian cobra Naja h. haje (Squamata: Serpentes: Elapidae)

    Get PDF
    Background: The study of craniofacial development is important in understanding the ontogenetic processes behind morphological diversity. A complete morphological description of the embryonic skull development of the Egyptian cobra, Naja h. haje, is lacking and there has been little comparative discussion of skull development either among elapid snakes or between them and other snakes. Methodology/Principal Findings: We present a description of skull development through a full sequence of developmental stages of the Egyptian cobra, and compare it to other snakes. Associated soft tissues of the head are noted where relevant. The first visible ossification centres are in the supratemporal, prearticular and surangular, with slight ossification visible in parts of the maxilla, prefrontal, and dentary. Epiotic centres of ossification are present in the supraoccipital, and the body of the supraoccipital forms from the tectum posterior not the tectum synoticum. The venom glands are visible as distinct bodies as early at stage 5 and enlarge later to extend from the otic capsule to the maxilla level with the anterior margin of the eye. The gland becomes more prominent shortly before hatching, concomitant with the development of the fangs. The tongue shows incipient forking at stage 5, and becomes fully bifid at stage 6. Conclusions/significance: We present the first detailed staging series of cranial development for the Egyptian cobra, Naja h. haje. This is one of the first studies since the classical works of G. de Beer and W. Parker that provides a detailed description of cranial development in an advanced snake species. It allows us to correct errors and misinterpretations in previous accounts which were based on a small sample of specimens of uncertain age. Our results highlight potentially significant variation in supraoccipital formation among squamates and the need for further research in this area

    Four legs too many?

    Get PDF
    Snakes are a remarkably diverse and successful group today, but their evolutionary origins are obscure. The discovery of snakes with two legs has shed light on the transition from lizards to snakes, but no snake has been described with four limbs, and the ecology of early snakes is poorly known. We describe a four-limbed snake from the Early Cretaceous (Aptian) Crato Formation of Brazil. The snake has a serpentiform body plan with an elongate trunk, short tail, and large ventral scales suggesting characteristic serpentine locomotion, yet retains small prehensile limbs. Skull and body proportions as well as reduced neural spines indicate fossorial adaptation, suggesting that snakes evolved from burrowing rather than marine ancestors. Hooked teeth, an intramandibular joint, a flexible spine capable of constricting prey, and the presence of vertebrate remains in the guts indicate that this species preyed on vertebrates and that snakes made the transition to carnivory early in their history. The structure of the limbs suggests that they were adapted for grasping, either to seize prey or as claspers during mating. Together with a diverse fauna of basal snakes from the Cretaceous of South America, Africa, and India, this snake suggests that crown Serpentes originated in Gondwana

    The palatal dentition of tetrapods and its functional significance

    Get PDF
    The presence of a palatal dentition is generally considered to be the primitive condition in amniotes, with each major lineage showing a tendency toward reduction. This study highlights the variation in palatal tooth arrangements and reveals clear trends within the evolutionary history of tetrapods. Major changes occurred in the transition between early tetrapods and amphibians on the one hand, and stem amniotes on the other. These changes reflect the function of the palatal dentition, which can play an important role in holding and manipulating food during feeding. Differences in the arrangement of palatal teeth, and in their pattern of loss, likely reflect differences in feeding strategy but also changes in the arrangement of cranial soft tissues, as the palatal dentition works best with a well-developed mobile tongue. It is difficult to explain the loss of palatal teeth in terms of any single factor, but palatal tooth patterns have the potential to provide new information on diet and feeding strategy in extinct taxa

    An assemblage of lizards from the early cretaceous of Japan

    Get PDF
    The Early Cretaceous deposits of the Tetori Group of western Japan have yielded a diverse wetland vertebrate fauna including both aquatic and terrestrial components. The latter include several lizards, three of which have been named and described in detail: Kaganaias hakusanensis, a long-bodied aquatic lizard; Kuwajimalla kagaensis, a herbivorous borioteiioid; and Sakurasaurus shokawensis, a relative of the Chinese Jehol genus Yabeinosaurus. Here we describe lizard material from the Shiramine locality representing five or six additional taxa, three of which are named herein: a small lizard represented by two associations, but of unresolved phylogenetic position; a slightly larger lizard with tricuspid teeth that is related to borioteiioids; and a bizarre lizard with bicuspid teeth represented by a single, but morphologically unique, jaw. The three additional lizard morphotypes are unnamed. One has bicuspid teeth but unspecialised jaws. The second has small unicuspid teeth in a dentary bearing a deep coronoid process and resembling the dentary of the enigmatic Late Cretaceous Mongolian Myrmecodaptria microphagosa. The third morphotype is represented by a single fragmentary specimen and has small teeth in a deep jaw. Together, the Kuwajima lizards form a phylogenetically and morphologically diverse assemblage

    Morphology and function of the palatal dentition in Choristodera

    Get PDF
    Choristoderes are a group of extinct freshwater reptiles that were distributed throughout Laurasia from the Middle Jurassic to the Miocene. They are inferred to have had a lifestyle similar to that of extant gavialid crocodiles, but they differed from crocodiles in retaining an extensive palatal dentition. All choristoderes had teeth on the vomers, palatines and pterygoids, and teeth are rarely present on the parasphenoid. Palatal teeth are conical, as in the marginal dentition, and form longitudinal and transverse rows. Detailed examination of different genera shows that the orientation of the palatal tooth crowns changes with their position on the palate, supporting the view that they are involved in intra-oral food transportation, presumably in combination with a fleshy tongue. Moreover, observed variation in palatal tooth shape and the width of palatal tooth batteries may provide additional clues about diet. The European Simoedosaurus lemoinei has sharper palatal teeth than its North American counterpart, S. dakotensis, suggesting a preference for softer prey - a conclusion consistent with the more gracile teeth and narrower snout

    A resegmentation-shift model for vertebral patterning

    Get PDF
    Segmentation of the vertebrate body axis is established in the embryo by formation of somites, which give rise to the axial muscles (myotome) and vertebrae (sclerotome). To allow a muscle to attach to two successive vertebrae, the myotome and sclerotome must be repositioned by half a segment with respect to each other. Two main models have been put forward: 'resegmentation' proposes that each half-sclerotome joins with the half-sclerotome from the next adjacent somite to form a vertebra containing cells from two successive somites on each side of the midline. The second model postulates that a single vertebra is made from a single somite and that the sclerotome shifts with respect to the myotome. There is conflicting evidence for these models, and the possibility that the mechanism may vary along the vertebral column has not been considered. Here we use DiI and DiO to trace somite contributions to the vertebrae in different axial regions in the chick embryo. We demonstrate that vertebral bodies and neural arches form by resegmentation but that sclerotome cells shift in a region-specific manner according to their dorsoventral position within a segment. We propose a 'resegmentation-shift' model as the mechanism for amniote vertebral patterning

    Taxonomic revision of lizards from the Paleocene deposits of the Qianshan Basin, Anhui, China

    Get PDF
    Although the Late Cretaceous lizard fauna of China and Mongolia is relatively well-known, information on Paleocene lizards from the same region is currently limited. Several species of lizards have been reported from the Paleocene Wanghudun and Doumu formations of Qianshan Basin on the basis of fragmentary specimens, namely Agama sinensis Hou, 1974, Anhuisaurus huainanensis Hou, 1974, Anqingosaurus brevicephalus Hou, 1976, Changjiangosaurus huananensis Hou, 1976, Qianshanosaurus huangpuensis Hou, 1974, and Tinosaurus doumuensis Hou, 1974. In this paper, we review all the reported material of these taxa with the aid of new technology, including CT scanning, and according to current views of squamate relationships and classification. Revised descriptions and classifications are given for each taxon, leading to changes in our understanding of faunal composition. This, in turn, reveals greater morphological and ecological diversity among the Paleocene lizards of the Qianshan Basin, including the occurrence of a varaniform (IVPP V 22767), and the reinterpretation of Anqingosaurus as a possible burrower. Further work on the Paleocene Qianshan lizards is ongoing and the discovery of new specimens may help to solve the puzzles these strange lizards have posed

    Cellular aspects of somite formation in vertebrates

    Get PDF
    Vertebrate segmentation, the process that generates a regular arrangement of somites and thereby establishes the pattern of the adult body and of the musculoskeletal and peripheral nervous systems, was noticed many centuries ago. In the last few decades, there has been renewed interest in the process and especially in the molecular mechanisms that might account for its regularity and other spatial-temporal properties. Several models have been proposed but surprisingly, most of these do not provide clear links between the molecular mechanisms and the cell behaviours that generate the segmental pattern. Here we present a short survey of our current knowledge about the cellular aspects of vertebrate segmentation and the similarities and differences between different vertebrate groups in how they achieve their metameric pattern. Taking these variations into account should help to assess each of the models more appropriately

    The development of the osteocranium in the snake Psammophis sibilans (Serpentes: Lamprophiidae)

    Get PDF
    Non-avian reptiles are good models to investigate structural and developmental differences between amniotes. Investigations of craniofacial development in a complete series of embryos from oviposition up to hatching are still relatively rare. Consideration of a complete series can reveal developmental events that were previously missed, and thus correct or confirm theories about developmental events. The Egyptian Sand snake, Psammophis sibilans, has been a key species in descriptions of the snake skull development. However, published work was based on a limited sample of specimens collected from the wild. Here, we supplement previous descriptions with an illustrated account of skull development in P. sibilans based on a staged series of embryos and histological sections. Our findings largely agree with those of previous authors, although we record differences in developmental timing, confirming the presence of an egg tooth in this species. We add further observations on the enigmatic fenestra X, showing that it closes rather than merging with the prootic notch. Our observations revealed the likely contribution of the tectum posterius to the occipital roof, the presence of an internal carotid foramen (possibly transitory or variable), and the formation of the initial laterosphenoid pillar
    • …
    corecore