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Abstract  12 

The presence of a palatal dentition is generally considered to be the primitive condition in 13 

amniotes, with each major lineage showing a tendency toward reduction. This study 14 

highlights the variation in palatal tooth arrangements and reveals clear trends within the 15 

evolutionary history of tetrapods. Major changes occurred in the transition between early 16 

tetrapods and amphibians on the one hand, and stem amniotes on the other. These changes 17 

reflect the function of the palatal dentition, which can play an important role in holding and, 18 

manipulating food during feeding. Differences in the arrangement of palatal teeth, and in their 19 

pattern of loss, likely reflect differences in feeding strategy but also changes in the 20 

arrangement of cranial soft tissues, as the palatal dentition works best with a well-developed 21 

mobile tongue. It is difficult to explain the loss of palatal teeth in terms of any single factor, but 22 

palatal tooth patterns have the potential to provide new information on diet and feeding 23 

strategy in extinct taxa. 24 
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Introduction  31 

Any consideration of feeding in vertebrates will include detailed discussion of the marginal 32 

dentition. Far less attention has been paid to the palatal dentition, although characters of the 33 

palatal dentition are used in phylogenetic analysis (early tetrapods, Sigurdsen & Bolt, 2010; 34 

Diapsida, Benton, 1985; Evans, 1988; Archosauria, e.g. Sereno, 1991; Lepidosauromorpha, 35 

e.g. Evans, 1991; Parareptilia, Tsuji, 2006; Rhynchosauria, Dilkes, 1998; Synapsida, Sidor, 36 

2003; Abdala et al. 2008; Campione & Reisz, 2010; and Choristodera (Evans, 1990; 37 

Matsumoto, 2011).  There is a general acceptance that an extensive palatal dentition is 38 

plesiomorphic for amniotes. However, the evolutionary history of this dentition is poorly 39 

understood, and detailed studies of its structure and function in either extant or extinct 40 

tetrapods are rare (e.g. Regal, 1966; Kordikova, 2002; Mahler & Kearney, 2006; Diedrich, 41 

2010). During feeding, the jaws, tongue, and palate cooperate in food prehension, intra-oral 42 

transport, and swallowing, thus changes in the palatal dentition should reflect changes in 43 

feeding behaviour and/or changes in the anatomy of the oral soft tissues. Potentially, 44 

therefore, a better understanding of the functional morphology of the palatal dentition may 45 

provide an additional source of information on the biology of extinct tetrapods. Here we 46 

review the main trends in the evolutionary history of the tetrapod palatal dentition and then 47 

discuss them in relation to changes in the anatomy of the skull and oral soft tissues.  48 

 49 

 50 

Material and Methods  51 

Palatal tooth arrangements were mapped onto phylogenetic trees for the tetrapodomorph 52 

Eusthenopteron, early tetrapods,  and basal Amniota (Ruta et al. 2003; Ruta & Coates, 2007; 53 

Snitting, 2008);  Synapsida (Sidor, 2001); Parareptilia (Tsuji & Müller, 2009; Tsuji et al. 2012); 54 

and Diapsida (DeBraga & Rieppel, 1997; Rieppel & Reisz, 1999; Brusatte et al. 2010; Borsuk55 

−Białynicka & Evans, 2009a; Dilkes & Sues, 2009). The data on palatal tooth arrangement 56 

patterns for each taxon were collected from descriptions in the literature or data matrices for 57 

phylogenetic analysis. For some synapsids and early diapsids, the palatal tooth arrangement 58 

has not been described, and specimens were examined first hand (see Appendix 1-7).   59 

 60 
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Evolutionary patterns in the palatal dentition of early tetrapods and 61 

amphibians  62 

Early tetrapods (e.g. Acanthostega, Clack, 1994; Ichthyostega, Clack, 2012; Pederpes, Clack 63 

& Finney, 2005; Crassigyrinus, Clack, 2012; Greererpeton, Smithson, 1982; Megalocephalus, 64 

Beaumont, 1977) inherited the basic pattern of the palatal dentition (vomer, palatine, and 65 

ectopterygoid) from that of ancestral sarcopterygians (e.g. Eusthenopteron, Clack, 2012). 66 

There was a single lateral palatal tooth row on each side, running parallel to the jaw margin 67 

and with teeth of similar size (and/or larger) to those of the marginal dentition. In 68 

Eusthenopteron, the parasphenoid intervened between the vomers and the pterygoids in the 69 

midline, with the latter element expanded posterior to the marginal tooth row. Small teeth 70 

were randomly and widely distributed across the parasphenoid and pterygoid, forming a 71 

shagreen dentition. Early tetrapods retained shagreen teeth on the pterygoid (e.g. 72 

Ichthyostega, Acanthostega; Fig. 1), with parasphenoid teeth in a more limited area (e.g. 73 

Acanthostega, Clack, 1994; Pederpes, Clack & Finney, 2005; Greererpeton, Smithson, 1982; 74 

Fig. 1).  This primitive arrangement was conserved in many Temnospondyli (e.g. 75 

Phonerpeton, Dilkes, 1990; Doleserpeton, Sigurdsen & Bolt, 2010), Anthracosauria 76 

(Silvanerpeton, Ruta & Clack, 2006; Proterogyrinus, Holmes, 1984; Pholiderpeton, Clack, 77 

1987) and Seymouriamorpha (Seymouria, Klembara et al., 2005; Discosauriscus, Klembara, 78 

1997; Utegenia, Laurin, 1996), with a tooth shagreen on all palatal elements but a reduction 79 

in the number of large lateral palatal teeth (Fig. 1).  However, in temnospondyls enlargement 80 

of the interpterygoid vacuity separated the pterygoids with loss of their anterior midline 81 

contact (Fig. 1). As a result, the shagreen teeth on the pterygoid became more laterally 82 

restricted. In addition, the ventral surface of the interpterygoid vacuity was sometimes 83 

covered by a bony plate bearing patches of loosely set denticles (Schoch & Milner, 2000).  84 

Many lepospondyls retained the primitive arrangement with a lateral palatal tooth row 85 

parallel to the jaw margin, but there is more variation in the presence and/or arrangement of 86 

the shagreen teeth on the palate and the parasphenoid (Fig. 1: e.g. Odonterpeton; 87 

Tambachia, Sumida et al. 1998). Pantylus (Romer, 1969) had teeth scattered across the 88 

palate (various sizes distributed randomly), Brachydectes (Wellstead, 1991) possessed 89 

longitudinally aligned midline vomerine tooth rows, and some derived taxa (e.g. 90 
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Cardiocephalus, Ptyonius, Carroll et al. 1998) had reduced or lost the shagreen teeth 91 

completely (Fig. 1). Further variations are listed in Appendix 1.  92 

Living lissamphibians (Gymnophiona, Caudata, and Anura) have reduced shagreen teeth, 93 

and palatal teeth are usually restricted to the vomer and parasphenoid, although some 94 

species also bear teeth on a palatine/pterygopalatine (e.g. the caudates Siren and Necturus) 95 

or maxillopalatine (e.g. the gymnophionan Dermophis, Trueb, 1993).  Gymnophiona generally 96 

have a single lateral vomerine tooth row parallel to the jaw margin (e.g. Epicrionops, 97 

Nussbaum, 1977) whereas in frogs (Anura) there is more often a transverse tooth row lying 98 

parallel, or nearly parallel, to the anterior part of the marginal tooth row  (e.g. Pelobates, 99 

Roček, 1981; the hylid Triprion, Trueb, 1993) (see Appendix 1). The pattern in caudates is 100 

much more variable and ranges from a transverse anterior vomerine row (e.g. Ambystoma; 101 

the plethodontid Desmognathus, Trueb, 1993), a medial longitudinal row (e.g. the 102 

salamandrids Notophthalmus and Taricha, Trueb, 1993, Duellman & Trueb, 1994), a roughly 103 

“T” shaped combination row (e.g. the plethodontids Pseudotriton and Stereochilus, Regal, 104 

1966, Wake, 1966), an anterior row parallel to the marginal tooth row (e.g. Necturus, Trueb, 105 

1993;  Cryptobranchus, Elwood & Cundall, 1994)(Fig. 2A), or a tooth platform in either the 106 

anterior (Siren, Trueb, 1993) or posterior part of the mouth in combination with a transverse 107 

anterior vomerine row (e.g. the plethodontids Bolitoglossa and Plethodon, Wake, 1966).  108 

 109 

Evolutionary patterns in the palatal dentition of amniotes  110 

A dramatic change occurred in the palatal dentition of Diadectomorpha, the sister taxon of the 111 

Amniota (e.g. Ruta et al. 2003; Ruta & Coates, 2007). They lost the early tetrapod pattern (a 112 

lateral palatal row and median tooth shagreen) and replaced it with an arrangement of 113 

longitudinally oriented rows of conical teeth on the anterior palatal elements (e.g. Diadectes, 114 

Olson, 1947; Berman et al. 1998; Orobates, Berman et al. 2004) and/or a transverse posterior 115 

row on the pterygoid flange (Limnoscelis, Williston, 1911, Berman et al. 2010; Tseajaia, 116 

Moss, 1972). This palatal morphology would have been inherited by early members of both 117 

Synapsida (mammals and stem-mammals) and Reptilia (Parareptilia+Eureptilia) when these 118 

two major clades diverged in the Late Carboniferous.  119 

 120 
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Synapsida 121 

Recent phylogenetic analyses place either Caseidae or Ophiacodontidae + Varanopidae as 122 

the basal synapsid clade (Benson, 2012). In members of the Caseidae (e.g. Cotylorhynchus, 123 

Reisz & Sues, 2000; Ennatosaurus, Maddin et al. 2008) and Varanopidae (Mesenosaurus, 124 

Reisz & Berman, 2001, detailed information shown in Appendix 2), there were palatal teeth 125 

on the vomer, palatine, pterygoid, and, in some cases, the parasphenoid (Caseidae) and 126 

ectopterygoid (e.g. Edaphosaurus, Modesto, 1995). However, there was a general trend 127 

towards simplification and reduction of the longitudinal palatal tooth rows, while retaining the 128 

transverse pterygoid flange tooth row, which was usually located posterior to the marginal 129 

tooth row (Fig. 3). The vomerine tooth row tended to become narrower as the choanae 130 

elongated anteroposteriorly, and it was lost in Sphenacodontidae (e.g. Dimetrodon, Case, 131 

1904; Secodontosaurus, Reisz et al. 1992; Tetraceratops, Laurin & Reisz, 1996). The 132 

posterior elongation of the choanae also had the effect of restricting the longitudinal palatine 133 

and pterygoid tooth rows to the back of the mouth (Fig. 3). In these non-therapsid synapsids, 134 

particularly in the carnivorous Haptodus (Laurin, 1993), Dimetrodon (Case, 1904)(Fig. 2B), 135 

and Tetraceratops (Laurin & Reisz, 1996), the pterygoid flange teeth were often larger than 136 

those of the longitudinal tooth rows (vomer, palatine, pterygoid). By contrast, the herbivorous 137 

Edaphosaurus lacked pterygoid flange teeth but developed a large plate of closely packed 138 

palatine and pterygoid teeth level with the posterior teeth of the marginal row (Fig. 3).   139 

Further reductions occurred within the clade Therapsida (including Biarmosuchia, 140 

Dinocephalia, Anomodontia, and Theriodontia). Although some Biarmosuchia and 141 

Dinocephalia retained the transverse pterygoid flange tooth row, they lost vomerine teeth (the 142 

dinocephalian Estemmenosuchus is an exception, King, 1988) (Fig. 3). The longitudinal tooth 143 

rows were rearranged into either circular patches (e.g. the biarmosuchian Lycaenodon, 144 

Sigogneau-Russell,1989 and the dinocephalian Syodon, King, 1988), or a predominantly 145 

transverse, M-shaped anterior tooth row (e.g. Biarmosuchus, Ivakhnenko, 1999, and the 146 

dinocephalian Titanophoneus, King, 1988).   147 

Loss of the palatal dentition occurred independently within Anomodontia (except the basal 148 

Biseridens, Liu et al. 2009) and Theriodontia (Modesto et al. 1999). In the latter group, a 149 

palatal dentition was retained in Gorgonopsidae and some Therocephalia (Fig. 4). The palatal 150 
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dentition of gorgonopsids was similar to that in non-therapsids (e.g. Biarmosuchia), with 151 

posteriorly located circular tooth patches on the palatine and pterygoids (Fig. 4). The 152 

presence of a pterygoid flange row varied, even between species (e.g. Cyonosaurus, see 153 

Appendix 2). In Therocephalia, the medial palatal teeth were further restricted to a small area 154 

well posterior to the marginal tooth row (e.g. Regisaurus, Mendrez, 1972; Fourier & Rubidge, 155 

2007; Theriognathus, Brink, 1956; Viatkosuchus, Tatarinov, 1995), or were lost completely 156 

(e.g. Bauria, Kemp, 1982; Moschorhinus, Battail & Surkov, 2000). Palatal teeth were absent 157 

in Cynodontia (the lineage leading to mammals). 158 

 159 

Reptilia (Parareptilia+Eureptilia) 160 

In contrast to Synapsida, many basal members of both Parareptilia and Eureptilia retained 161 

longitudinal palatal tooth rows, in conjunction with those on the pterygoid flange (Fig. 5–7; 162 

Appendix 3–4).  163 

 164 

Parareptilia.  Most parareptiles had the same palatal tooth arrangement as diadectidomorphs 165 

and basal amniotes, but shagreen teeth were generally absent (the Permian Macroleter was 166 

an exception, Tsuji, 2006). Several early parareptiles had teeth on the parasphenoid and/or 167 

ectopteryoid (e.g. Millerosaurus, Carroll, 1988 and Lanthanosuchus, Efremov, 1946; 168 

Nyctiphruretus, Tsuji et al. 2012), but whether as a retention of the primitive condition or a 169 

redevelopment is unclear. Most parareptiles retained a tooth row on the pterygoid flange (e.g. 170 

Lanthanosuchus, Efremov, 1946; Nycteroleter, Tverdokhlebova & Ivakhnenko, 1984), 171 

although this is absent in Procolophoniodea (including Procolophon, Carroll & Lindsay, 1985; 172 

Cisneros, 2008; Barasaurus, Piveteau, 1955; Owenetta, Reisz & Scott, 2002) and 173 

Mesosaurus (Modesto, 2006). Where present, the orientation of the flange row also varies 174 

from clearly transverse (most taxa) to more oblique (~ 45° to the transverse axis in 175 

Scutosaurus [Tsuji et al. 2012] and Pareiasuchus [Lee et al. 1997]) (Fig. 5). The longitudinal 176 

tooth rows are generally straight, but there was some variation within procolophonids. In 177 

Procolophon, the palatine and pterygoid tooth rows form a “w” shape (Carroll and Lindsay, 178 

1985; Cisneros, 2008); Owenetta shows a triangular arrangement composed of vomer, 179 
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palatine and pterygoid rows (Fig. 5); and Bashkyroleter mesensis had an additional row 180 

running parallel to the marginal dentition (Ivakhnenko, 1997).  181 

Members of the Permian Bolosauridae (e.g. Bolosaurus, Eudibamus) generally lacked 182 

palatal teeth (Watson, 1954; Berman et al. 2000). This includes Belebey maximi and B. 183 

chengi (Ivakhnenko & Tverdochlebova, 1987; Müller et al. 2008), but pterygoid flange rows 184 

were present in B. vegrandis (Müller et al. 2008).   185 

 186 

Eureptilia and stem Diapsida.  Eureptilia also inherited the primitive amniote pattern of 187 

longitudinal and transverse palatal tooth rows, as shown by Captorhinus which had teeth on 188 

the palatine, pterygoid, and, variably, the parasphenoid (Warren, 1961; Modesto, 1998), but 189 

not the ectopterygoid. Warren (1961) recorded sporadic vomerine teeth in Captorhinus sp., 190 

but other authors recorded them as absent (Fox & Bowman, 1966). Perhaps they were 191 

variable like those of the parasphenoid, although Labidosaurus had lost both sets (Modesto et 192 

al. 2007). Parasphenoid teeth were present in several other stem eureptilian taxa and stem 193 

diapsids (e.g. Paleothyris, Carroll, 1969; Petrolacosaurus, Reisz, 1981; Orovenator, Reisz et 194 

al. 2011), but ectopterygoid teeth were rare (e.g. Araeoscelis, Vaughn, 1955)(Fig. 6). 195 

Claudiosaurus appears to have been exceptional in replacing the discrete tooth rows with a 196 

shagreen of small teeth across all but the ectopterygoid bones (Carroll, 1981)(Fig. 6).   197 

The stem diapsid pattern was inherited by members of some descendant clades (e.g. 198 

Youngina, Gow, 1975) but parasphenoid and ectopterygoid teeth were generally absent. 199 

Subsequently, members of the two major crown diapsid clades, Archosauromorpha and 200 

Lepidosauromorpha, showed parallel patterns of reduction from the primitive palatal pattern 201 

(Fig. 6–7).  202 

Basal archosauromophs, like Protorosaurus (Late Permian, Seeley, 1887) and Czatkowiella 203 

(Early Triassic, Borsuk-Białynicka & Evans, 2009a), retained longitudinal tooth rows on the 204 

vomer, palatine and pterygoid, but lacked teeth on either the pterygoid flange or 205 

parasphenoid (ectopterygoid teeth unknown; Fig. 7). In contrast, Choristodera (if these are 206 

archosauromorphs, e.g. Evans, 1988, 1990; Gauthier et al. 1988) generally retained the 207 

pterygoid flange row and expanded the longitudinal pterygoid row into a broad tooth battery. 208 

Most choristoderes, including the earliest (Middle - Late Jurassic Cteniogenys; Evans, 1990), 209 
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lacked parasphenoid teeth, so their presence in the Early Cretaceous neochoristodere 210 

Ikechosaurus (Brinkman & Dong, 1993) was probably a reacquisition (Fig. 2C). The broad-211 

snouted Paleocene choristodere Simoedosaurus (e.g. Sigogneau-Russell & Russell, 1978) is 212 

characterized by shagreen teeth covering the palate, and there may be a relationship 213 

between snout width and palatal tooth row width in this group (Matsumoto & Evans, 2015). 214 

   Members of some early archosauromorph clades (e.g. Rhynchosauridae, Langer & 215 

Schultz, 2000; Trilophosauria, Spielmann et al. 2008) independently lost the palatal dentition, 216 

possibly in association with the evolution of a specialized marginal dentition, but the primitive 217 

arrangement was retained in archosauriform stem taxa (Tanystropheus being unusual in 218 

having vomerine teeth running parallel to the marginal tooth row [Wild, 1973])(Fig. 7).  219 

Most crown-group archosaurs lacked palatal teeth (Dilkes & Sues, 2009), but a 220 

longitudinal row persisted on the palatal ramus of the pterygoid in a few taxa, including the 221 

early pterosaur Eudimorphodon (Wild, 1978), the basal non-avian dinosaur, Eodromaeus, 222 

and the basal sauropodmorph Eoraptor (Martinez et al. 2011; Sereno et al. 2012).  223 

 Marginal and palatal teeth were both present in the oldest recorded chelonian, the late 224 

Triassic aquatic Odontochelys (Li et al. 2008), which had longitudinal tooth rows on the 225 

vomer, palatine and pterygoid, but not the pterygoid flange. A similar palatal tooth 226 

arrangement was present in the terrestrial Proganochelys (Gaffney, 1990; Kordikova, 227 

2002)(Fig. 7), but teeth were absent in all known later testudine taxa. 228 

Within the aquatic Sauropterygia, Placodontia is exceptional in the possession of plate-like 229 

crushing palatal teeth that were larger than those of the marginal dentition (Neenan et al., 230 

2013)(Fig. 6). However, the palatal dentition was lost at an early stage in the Eosauropterygia 231 

(e.g. Nothosaurus, Albers & Rieppel, 2003; Simosaurus, Rieppel, 1994) and Ichthyopterygia 232 

(Motani, 1999). A single individual of the basal ichthyosaur Utatsusaurus hataii reportedly had 233 

teeth on the pterygoid, but some re-examination is needed (Motani, 1999, and personal 234 

communication to RM, 2007).  235 

In Lepidosauromorpha, the longitudinal rows remained extensive in stem lepidosaurs like 236 

the kuehneosaurs and in early rhynchocephalians (e.g. Gephyrosaurus, Evans, 1980), but the 237 

pterygoid flange row was lost in most taxa (Fig. 6). The palate of early squamates remains 238 

unknown but was probably like that of stem-lepidosaurs. Crown rhynchocephalians lost the 239 
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pterygoid teeth but preserved and enlarged the lateral palatine row (e.g. Palaeopleurosaurus, 240 

Carroll & Wild, 1994; Priosphenodon, Apesteguia & Novas, 2003; Sphenodon, Jones et al. 241 

2012), which was realigned so as to lie parallel to the maxillary tooth row. This arrangement 242 

allows the specialized shearing mechanism that characterizes Rhynchocephalia (Jones et al. 243 

2012), whereby the teeth of the dentary bite between the maxillary and palatine tooth rows.  244 

Squamates only rarely have palatine teeth (e.g. polychrotines, Lanthanotus, Heloderma) but 245 

pterygoid teeth are more common (Mahler & Kearney, 2006; Evans, 2008), usually along the 246 

margins of the interpterygoid vacuity (Fig. 6). Without well-preserved early members of major 247 

lineages, it is difficult to determine whether palatine teeth were lost multiple times, or have 248 

occasionally been regained as has been suggested for the vomerine teeth of the anguid 249 

Ophisaurus apodus (Evans, 2008)(Fig. 6). In snakes, the small-mouthed scolecophidians, 250 

anomochilids, and uropeltids lack any palatal teeth (Cundall & Irish, 2008), but this is likely to 251 

be a specialization rather than the primitive condition. ‘Primitive’ alethinophidian snakes (e.g. 252 

cylindrophiids, aniliids, xenopeltids) have a row of teeth on both the palatine and pterygoid, 253 

and this arrangement is retained in macrostomatan snakes, where enlarged palatal teeth play 254 

an important role in gripping prey as it is drawn into the mouth (Mahler & Kearney, 2006; 255 

Cundall & Irish, 2008). Again, the palatine teeth, at least, may have been regained (Cundall & 256 

Greene, 2000). The palate is incompletely known in basal fossil snakes like the Cretaceous 257 

Najash (Zaher et al. 2009) and Dinilysia (Zaher & Scanferla, 2012), but the marine 258 

simoliophids (e.g. Haasiophis, Tchernov et al. 2000) already show the macrostomatan 259 

configuration. 260 

 261 

Discussion  262 

The review presented above highlights the variation in palatal tooth morphology that exists 263 

across tetrapods, but also show some clear trends, summarized in Figure 8. The first is a 264 

major difference between early tetrapods and Temnospondyli ('amphibians'), on the one 265 

hand, and early amniotes on the other. Early amniotes are characterized by a rearrangement 266 

of the palatal dentition to produce a series of distinct longitudinal and/or transverse tooth 267 

rows. This arrangement was retained in early representatives of both Synapsida and Reptilia, 268 

but there followed a similar, but independent, pattern of reduction in both lineages, starting 269 
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with the teeth on the parasphenoid and ectopterygoid, and then the vomer and/or pterygoid 270 

flange. Within synapsids, all remaining palatal teeth were lost in the ancestors of cynodonts, 271 

concomitant with the evolution of the secondary palate. However, as most Reptilia have only 272 

a primary palate, palatal teeth persisted somewhat longer, especially in parareptiles and early 273 

members of both Archosauromorpha and Lepidosauromorpha.  Palatal teeth were lost 274 

completely in the ancestors of crown-group crocodiles and turtles, and in early non-avian 275 

dinosaurs.  In contrast, lepidosaurs tended to retain (or regain) at least some palatal teeth, 276 

most often on the posterior part of the pterygoid plate. Regain would also help to explain the 277 

presence of parasphenoid teeth in some derived members of Choristodera and 278 

Kuehneosaurus, despite their absence in more primitive members of the same lineages. It 279 

seems likely the developmental mechanism for generating palatal teeth was suppressed 280 

rather than lost in some lineages, a phenomenon that has been reported for the marginal 281 

dentition in, for example, birds and frogs (Harris et al. 2006; Wiens, 2011). 282 

These trends in the arrangement and subsequent reduction of the palatal dentition raise 283 

questions about the role of palatal teeth generally and of different patterns (e.g. tooth 284 

shagreen versus distinct rows) or groups (e.g. transverse pterygoid flange teeth versus 285 

longitudinal rows) of palatal teeth. Like the marginal dentition, the palatal dentition would be 286 

expected to reflect diet and feeding strategy to some degree, but diet alone is less likely to 287 

explain major trends. Palate morphology should also be correlated with structures in the floor 288 

of the mouth, notably the tongue, the hyobranchial apparatus, and the pharynx, as well as jaw 289 

muscles like the pterygoideus that have palatal attachments, and with other aspects of 290 

feeding strategy including skull kinesis and jaw movements.  291 

Based on studies of living taxa (as referenced below), Figure 9 presents a summary of 292 

some major changes that are thought to have occurred in the soft tissues and/or feeding 293 

mechanics of major tetrapod groups. Some of these changes may be correlated with changes 294 

in the palatal dentition. However, developing functional hypotheses to explain palatal tooth 295 

distribution in extinct taxa is complicated by the fact that, with the exception of snakes (which 296 

are highly specialized), most living amniotes have either significantly reduced the palatal 297 

dentition (lizards, rhynchocephalians) or lost it completely (chelonians, archosaurs, 298 

mammals). Moreover, examination of the palatal surface in a bony skull provides an 299 
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incomplete understanding of its original structure, much of which relies on the presence of 300 

overlying soft tissues. Thus, for example, an apparently smooth bone surface may have been 301 

covered in life by keratinized oral epithelium that was itself ridged or papillate (Fig. 10).   302 

One of the major challenges faced by early land animals was food acquisition (e.g. Lauder 303 

& Gillis, 1997). Although aquatic animals often rely on suction feeding to ingest prey and 304 

transport it through the mouth toward the pharynx (e.g. Lauder & Shaffer, 1993; Deban & 305 

Wake, 2000; Iwasaki, 2002), terrestrial animals must move food physically into the mouth, 306 

pass it towards the back of the oral cavity (intra-oral transport, e.g. Smith, 1993; Schwenk, 307 

2000a), and finally push into the pharynx prior to swallowing. The palatal dentition, lying 308 

between the teeth of the upper jaws, is positioned to assist the tongue and jaws primarily in 309 

intra-oral transport. Very small or thin prey may be moved by the tongue alone (due to 310 

surface adhesion) but the development of a palatal gripping surface would have made it 311 

easier to manipulate (and perhaps subjugate) larger, potentially resistant, food items. The 312 

longitudinal palatal rows of adult terrestrial salamanders have also been correlated with the 313 

possession of a mobile tongue (Regal, 1966; Wake & Deban, 2000), the two working together 314 

to hold and transport food. However, the absence of intrinsic muscles in most amphibian 315 

tongues (Schwenk, 2000a) may limit their mobility and power within the oral cavity.  316 

A muscular tongue with both extrinsic and intrinsic muscles is found in many amniotes and 317 

probably evolved in stem members of that group, followed by keratinization of the epithelial 318 

surface (Iwasaki, 2002). This type of tongue is well adapted to work against the roof of the 319 

mouth during intra-oral transport and also to help to roll the food into a bolus at the back of 320 

the oral cavity (Schwenk, 2000a). It may therefore be significant that the inferred evolution of 321 

this type of tongue (stem-amniotes) was coincident with the change in the pattern of palatal 322 

teeth into an ordered arrangement of distinct longitudinal rows. In the absence of a muscular 323 

pharynx, a muscular tongue is also used to push the food bolus into the entrance of the 324 

pharynx, a process known as pharyngeal packing (Schwenk, 2000a). Teeth on the posterior 325 

part of the palate (parasphenoid and pterygoid flanges) may originally have been important in 326 

holding the food bolus in place at the entrance to the pharynx, but perhaps became less so as 327 

food positioning and swallowing became more efficient (e.g. by expansion of posterior lobes 328 

on the tongue, or by kinetic movements of the jaws and palate, Schwenk 2000a). 329 
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Reacquisition of parasphenoid teeth (as in the Late Triassic kuehneosaurs and the 330 

neochoristodere Ikechosaurus) may therefore indicate a change in skull biomechanics or 331 

feeding strategy whereby an extra gripping surface at the entrance to the pharynx was 332 

beneficial. In kuehneosaurs, at least, this may have been correlated with a potential for the 333 

quadrates (and attached pterygoids) to splay out laterally to increase pharyngeal width (SE 334 

unpublished). Moreover, a subsequent increase in size of the pterygoideus muscle in later 335 

lineages, parts of which attach to the pterygoid flange, may have resulted in loss of the 336 

pterygoid flange tooth row (e.g. King et al. 1989; Maier et al. 1996). 337 

The dichotomy in the fate of the palatal dentition between archosauromorphs and 338 

lepidosauromorphs may, in part, reflect changes in the archosaurian tongue. Both crocodiles 339 

and birds, and thus potentially their common archosaurian ancestor, have lost much of the 340 

intrinsic tongue musculature (Schwenk, 2000a). Instead of using the tongue for prehension 341 

and transport, they mainly use jaw prehension, inertial feeding, and gravity (Schwenk, 342 

2000a). Loss of the palatal dentition would be consistent with this, as would the development 343 

of a secondary palate in derived crocodiles. However, some extant archosaurs (birds, 344 

crocodiles) and chelonians (e.g. the sea turtles Dermochelys coriacea, Chelonia mydas) have 345 

keratinized epithelium forming corny papillae and/or rugae on the palate and/or on the tongue 346 

(e.g. Shimada et al. 1990; Kobayashi et al. 1998; Iwasaki, 2002) (Fig. 10). These may have a 347 

role analogous to that of the original palatal dentition, especially in turtles where a muscular 348 

tongue is retained. In some birds, palatal papillae run transversally across the back of the oral 349 

cavity, an arrangement similar to that of a pterygoid flange tooth row. Harrison (1964) 350 

suggested that this arrangement, which can also occur across the back of the tongue, 351 

facilitates positioning of prey prior to swallowing, a role that we also infer for the pterygoid 352 

flange and parasphenoid teeth of more primitive amniote taxa.  353 

Most lepidosaurs have a mobile muscular tongue with a papillose surface (Schwenk, 354 

2000b). Although many non-iguanian lizards used jaw prehension to bring food into the 355 

mouth, aided by varying levels of kinesis, most lizards still use the tongue for intraoral 356 

transport and pharyngeal packing, with the latter aided in most taxa by enlarged posterior 357 

lobes on the tongue (chameleons, varanids and some teiids lack these). The retention of 358 

clusters or lines of teeth on the posterior part of the pterygoid plate, close to the opening of 359 
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the pharynx (Mahler & Kearney, 2006) may help in positioning/restraining the food bolus 360 

during packing. Pharyngeal packing is followed by pharyngeal compression, in which external 361 

neck muscles (constrictor colli) contract to squeeze the bolus into the muscular esophagus for 362 

swallowing (Schwenk, 2000a). However, the bolus needs to be pushed posterior to the main 363 

body of the hyoid before compression begins, to ensure it does not move back up into the 364 

mouth instead. In derived anguimorphs and snakes, together or independently depending on 365 

the phylogenetic hypothesis, the anterior part of the tongue is bifid and slender, with a purely 366 

chemosensory role. In Varanus, this change in tongue function is compensated for by the 367 

adoption of inertial feeding whereby food items are effectively thrown to the back of the mouth 368 

(Schwenk, 2000b). Snakes employ a different strategy, using kinetic jaws and, especially in 369 

macrostomatans, enlarged palatine and pterygoid teeth, to draw prey to the back of the 370 

mouth for swallowing. As noted above, these may be a secondary development, given that 371 

both tongue action and inertial feeding are precluded in snakes.  372 

The fossil record of synapsids is generally good, permitting many stages in the evolution of 373 

the mammalian feeding apparatus, such as heterodonty, reduction of the accessory jaw 374 

bones, and formation of a bony secondary palate, to be followed. Coincident changes in oral 375 

soft anatomy must also have occurred (Fig. 9), although these are more difficult to pinpoint in 376 

time. They include formation of a soft tissue secondary palate prior to the bony one (choanal 377 

folds), extension of the bony secondary palate by a muscular soft palate to improve the 378 

separation of food and air streams, and muscularization of the pharynx so that the food bolus 379 

can be formed within the oropharynx rather than in the mouth, and then swallowed rapidly 380 

(e.g. Maier et al. 1996; Schwenk, 2000a). This would have reduced the need for 381 

parasphenoid or pterygoid flange teeth. The mammalian tongue remained large and 382 

muscular, and reduction of the hyoid apparatus gave it greater mobility for intraoral transport, 383 

aided by the development of muscular cheeks. Although palatal teeth were lost, many 384 

terrestrial mammals (like birds and turtles) have developed transverse palatal rugae to help to 385 

grip food. These rugae are generally reduced in aquatic mammals that feed under water (e.g. 386 

suction feeders) where a gripping palatal surface is less useful (Werth, 2000), although 387 

Beaked Whales are an exception to this, in developing papillose rugosities to hold their 388 

slippery prey (Heyning & Mead, 1996).  389 
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 390 

Conclusions 391 

Palatal teeth clearly had an important role in holding and manipulating food within the mouth 392 

(although they may occasionally have contributed to food reduction), and it is reasonable to 393 

conclude that an extensive palatal dentition was correlated with a well-developed mobile 394 

tongue (although the obverse is not necessarily true). The more anterior palatal teeth (vomer, 395 

palatine, anterior pterygoid) were probably used mainly during intraoral transport, whereas 396 

posterior palatal teeth, notably those on the pterygoid flange and parasphenoid, may have 397 

had a greater role in positioning and stabilizing the food bolus at the entrance to the pharynx. 398 

Subsequent loss/reduction of the palatal dentition in derived members of most major tetrapod 399 

lineages was probably linked to anatomical and functional changes that rendered a palatal 400 

gripping surface less important or effective. These include  401 

1. reduction of the tongue (e.g. archosaurs, varanid lizards). 402 

2. functional replacement of the palatal dentition with palatal or lingual rugosities (e.g. 403 

some turtles, mammals), or with keratinized papillae (e.g. birds). 404 

3. skull or jaw adaptations that improved food holding (e.g. cranial kinesis) 405 

4. changes in feeding strategy (e.g. the adoption of inertial feeding, Varanus, crocodiles) 406 

5. invasion of the ventral palatal surface by pterygoid musculature 407 

6. development of an extensive hard and soft palate (e.g. mammals). 408 

No single factor can be invoked to explain the loss (or reacquisition) of palatal teeth in any 409 

one taxon, and many aspects remain poorly understood (e.g. the relationship between 410 

skeletal and soft tissue anatomy in the palate; the developmental biology of the palatal 411 

dentition). Nonetheless, palatal tooth patterns have the potential to provide additional 412 

information on diet and feeding strategy in extinct taxa and would benefit from further more 413 

detailed study.  414 
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Figure captions  911 

Fig. 1 Phylogenetic tree for early tetrapods and amphibians showing arrangement of palatal 912 

dentition. Colour coding of the palatal figures is consistent in all figures (tree modified from 913 

Ruta & Coates, 2007). Palatal figures as follows: 1, Eusthenopteron; 2, Acanthostega; 3, 914 

Pederpes; 4, Crassigyrinus; 5, Greerepeton; 6, Edops; 7, Balanerpeton (original image 915 

reflected); 8, Phonerpeton; 9, Doleserpeton; 10, Dermophis mexicanus, Gymnophiona; 11, 916 

Stereochilus marginatum, Caudata; 12, Gastrotheca walker, Anura; 13, Silvanerpeton; 14, 917 

Proterogyrinus; 15, Seymouria; 16, Odonterpeton; 17, Rhynchonkos; 18, Cardiocephalus 918 

(original image reflected); 19, Pantylus; 20, Brachydectes; 21, Batrachiderpeton; 22, 919 

Ptyonius; 23, Diadectes. Image sources: 1,2,4, Clack, 2012; 3, Clack & Finney, 2005; 5, 920 

Smithson, 1982; 6, Romer & Witter, 1942; 7, Holmes 2000; 8, Dilkes, 1990; 9, Sigurdsen & 921 

Bolt, 2010; 10-12, Duellman & Trueb, 1994; 13, Ruta & Clack, 2006; 14, Holmes, 1984; 15, 922 
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Klembara et al. 2005; 16-22, Carroll et al. 1998; 23, Reisz & Sues, 2000；1, 10-13, 20 923 

original without scale. Abbreviations: ANTH, Anthracosauria; LISS, Lissamphibia; SEY, 924 

Seymouriamorpha. 925 

 926 

Fig. 2 Photographs of the palatal tooth arrangement in various lineages: A, Andrias japonicas 927 

(Lisamphibia; NSM-PO-H-447); B, Dimetrodon limbatus (Synapsida; AMNH FR 4001); C, 928 

Ikechosaurus sunailinae (Choristodera, Diapsida; IVPP V9611-3), grey coloured area marks 929 

nasopalatal trough and blue coloured area marks the distribution of the palatal dentition. 930 

Institutional abbreviations: American Museum Natural History (AMNH); IVPP Institute of 931 

Vertebrate Paleontology and Paleoanthropology, Beijing, China (IVPP); National Museum of 932 

Nature and Science, Tokyo (NSM). Anatomical abbreviations: d, dentary; ept, ectopterygoid; 933 

hy, hyoid; pal, palatine; psh, parasphenoid; pt, pterygoid; pt fl, pterygoid flange; v, vomer.   934 

 935 

Fig. 3 Skulls of synapsids in palatal view (phylogeny based on Sidor, 2001): 1 936 

Cotylorhynchus; 2, Ennatosaurus; 3, Mesenosaurus; 4, Varanosaurus; 5, Edaphosaurus; 6, 937 

Haptodus; 7, Secodontosaurus; 8, Tetraceratops; 9, Biarmosuchus; 10, Lycaenodon; 11, 938 

Herpetoskylax; 12, Titanophoneus; 13, Syodon; 14, Styracocephalus (original without scale); 939 

15, Estemmenosuchus; 16, Struthiocephalus. Image sources: 1, Reisz & Sues, 2000; 2, 940 

Maddin et al. 2008; 3, Reisz & Berman, 2001; 4, Berman et al. 1995; 5, Modesto, 1995; 6, 941 

Laurin, 1993; 7, Reisz et al. 1992; 8, Laurin & Reisz, 1996; 9, Ivakhnenko, 1999; 10-11, 942 

Sigogneau-Russell, 1989; 12-13, 15, King 1988; 14, Rubidge & van den Heever, 1997; 16, 943 

Rubidge, 1991. Abbreviations: BIAR, Biarmosuchia; CASE, Caseasauria; DINO, 944 

Dinocephalia; OPHI, Ophiacodontidae; SPHE, Sphenacodontidae; VARA, Varanopidae. 945 

 946 

Fig. 4 Skulls of synapsids in palatal view (phylogeny based on Sidor, 2001), continued from 947 

Figure 4: 1, Aelurosaurus; 2, Arctognathus; 3, Leontocephalus; 4, Scylacops; 5, Aloposaurus; 948 

6, Gorgonops; 7, Arctops; 8, Prorubidgea; 9, Dinogorgon; 10, Rubidgea (original without 949 

scale); 11, Theriognathus; 12 Viatkosuchus (original without scale); 13 Regisaurus. Image 950 

sources: 1-10, Sigogneau-Russell, 1989; 11,13, Kemp, 1982; 12, Tatarinov, 1995.  951 

 952 
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Fig. 5 Skulls of parareptiles in palatal view (phylogeny based on Tsuji et al., 2012). 1, 953 

Mesosaurus; 2, Millerosaurus; 3, Acleistorhinus; 4, Nyctiphruretus; 5, Procolophon (original 954 

without scale); 6, Owenetta; 7, Scutosaurus; 8, Pareiasuchus; 9, Macroleter; 10, Nycteroleter; 955 

11, Bashkyroleter mesensis. Image sources: 1, Modesto, 2006; 2, 4,7, Carroll, 1988; 3, 956 

DeBraga & Reisz, 1996; 5, Carroll & Lindsay, 1985; 6, Reisz & Scott, 2002; 8, Lee et al. 957 

1997; 9, Tsuji, 2006; 10, Tverdokhlebov & Ivakhnenko, 1984; 11, Ivakhnenko, 1997. 958 

Abbreviations: LANT, Lanthanosuchidae; BOL, Bolosauridae; PROCOL, Procolophonoidea; 959 

PAREIA, Pareiasauria. 960 

 961 

Fig. 6 Skulls of Eureptilia and Diapsida, Sauropterygia, Ichthyopterygia, and 962 

Lepidosauromorpha in palatal view  (phylogeny based on DeBraga & Rieppel, 1997; Pyron et 963 

al. 2013; Rieppel & Reisz, 1999; Wiens et al. 2010) 1, Captorhinus; 2, Paleothyris; 3, 964 

Petrolacosaurus; 4, Araeoscelis; 5, Claudiosaurus; 6,Youngina; 7, Placodus; 8, 965 

Kuehneosaurus; 9, Marmoretta; 10, Gephyrosaurus; 11, Clevosaurus; 12, Sphenodon; 13, 966 

Lacerta; 14, Ctenosaura (original without scale); 15, Ophisaurus; 16 Heloderma; 17, 967 

Shinisaurus; 18, Platecarpus (original without scale); 19, Anilius. Image sources: 1, Reisz & 968 

Sues, 2000; 2, Benton, 2000; 3, Reisz, 1981; 4, Vaughn, 1955; 5-7, Carroll, 1988; 8, 969 

Robinson, 1962; 9, Evans, 1991; 10-11, Jones, 2006; 12,18, Romer, 1956; 13-17, Evans, 970 

2008; 19, Cundall & Irish, 2008.  Abbreviation: Rhyncho, Rhynchocephalia. 971 

 972 

Fig. 7 Skulls of Archosauromorph in palatal view (phylogeny based on Brusatte et al. 2010; 973 

Borsuk−Białynicka & Evans, 2009a; Dilkes & Sues, 2009): 1, Czatkowiella; 2, Cteniogenys; 3, 974 

Proganochelys; 4, Mesosuchus; 5, Tanystropheus; 6, Proterosuchus; 7, Osmolskina; 8, 975 

Euparkeria; 9, Doswellia; 10, Proterochampsa. Image sources: 1, Borsuk−Białynicka & 976 

Evans, 2009a; 2, Evans, 1990; 3,6, Carroll, 1988; 4, Dilkes, 1998; 5, Wild, 1987; 7, 977 

Borsuk−Białynicka & Evans, 2009b; 8, Ewer, 1965; 9, Weems, 1980; 10, Sill, 1967. 978 

 979 

 980 

Fig. 8 Summary of evolutionary patterns in the palatal dentition of tetrapods.  981 

 982 
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Fig. 9 Summary of evolutionary history of soft tissues related to feeding through tetrapod 983 

evolution (see text for detail and references).  984 

 985 

Fig. 10 Keratinized oral epithelium in extant taxa; A, Anas platyrhynchos (Mallard; KPM-NF 986 

2002622, floor of mouth (left) and palate (right); B, Spheniscus demersus (African Penguin; 987 

KPM-NF 2002403), dissection photographs and CT image of a sagittal section; C,  988 

Osteolaemus tetraspis (Dwarf Crocodile; Ueno Zoo, Tokyo Japan, no number), palatal 989 

surface; D, Chelonia agassizii (Galápagos Green Turtle; KPM-NFR 389), palatal surface with 990 

keratinized keels and serrations. Institutional abbreviation: Kanegawa Prefectural Museum of 991 

Natural History (KPM-NF).  992 

 993 

Appendices 1–4 994 

1. Early tetrapods and amphibians, arrangement of the palatal dentition   995 

2. Synapsida, arrangement of the palatal dentition   996 

3. Parareptilia, arrangement of the palatal dentition   997 

4. Diapsida, arrangement of the palatal dentition   998 

 999 

Supplementary information 1000 

Sup-Fig. 1. Skulls of early tetrapods in palatal view. A, Eusthenopteron (original without 1001 

scale); B, Acanthostega; C, Pederpes; D, Crassigyrius; E, Greerepeton; F, Edops; G, 1002 

Balanerpeton; H, Phonerpeton; I, Doleserpeton; J, Silvanerpeton; K, Proterogyrinus; L, 1003 

Pholiderpeton; M, Seymouria; N, Odonterpeton; O, Microbrachis; P, Hapsidopareion; Q, 1004 

Rhynchonkos; R, Cardiocephalus (original image reflected); S, Pantylus; T, Brachydectes 1005 

(original without scale); U, Batrachiderpeton; V, Ptyonius; W, Diadectes; X, Dermophis 1006 

mexicanus (Gymnophiona); Y, Stereochilus marginatum (Caudata); Z, Gastrotheca walker 1007 

(Anura), original without scale. Image sources:  A, B,D, Clack, 2012; C, Clack & Finney, 2005; 1008 

E, Smithson, 1982; F, Romer & Witter, 1942; G, Holmes, 2000 (original image reflected); H, 1009 

Dilkes, 1990; I, Sigurdsen & Bolt, 2010; J, Ruta & Clack, 2006; K, Holmes, 1984; L, Clack, 1010 

1987; M, Klembara et al. 2005; N, P-T, Carroll et al. 1998; O, Vallian & Laurin, 2004; U-V, 1011 
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Carroll et al. 1998; W, Reisz & Sues, 2000; X-Z, Duellman & Trueb, 1994 . Colour coding on 1012 

the palate same as text Figures 1–7.  1013 

 1014 

Sup-Fig. 2 Skulls of synapsids in palatal view, Part 1: A, Cotylorhynchus (Caseasauria); B, 1015 

Ennatosaurus (Caseasauria); C, Mesenosaurus (Varanopidae); D, Varanosaurus 1016 

(Ophiacodontidae); E, Edaphosaurus; F, Haptodus; G, Secodontosaurus 1017 

(Sphenacodontidae); H, Tetraceratops; I, Biarmosuchus; J, Lycaenodon (Biarmosuchia); K, 1018 

Titanophoneus (Dinocephalia); L, Syodon (Dinocephalia); M, Styracocephalus (Dinocephalia, 1019 

original without scale bar); N, Estemmenosuchus (Dinocephalia); O, Struthiocephalus 1020 

(Dinocephalia); P, Ulemosaurus (Dinocephalia). Image sources: A, Reisz & Sues, 2000; B, 1021 

Maddin et al. 2008; C, Reisz & Berman, 2001; D, Berman et al. 1995; E, Modesto, 1995; F, 1022 

Laurin, 1993; G, Reisz et al. 1992; H, Laurin & Reisz, 1996; I, Ivakhnenko, 1999; J, 1023 

Sigogneau-Russell,1989; K-L, N-P, King, 1988; M, Rubidge & van den Heever, 1997.  1024 

 1025 

Sup-Fig. 3 Skulls of synapsids in palatal view, Part 2: A, Otsheria (Anomodontia, original 1026 

without scale); B, Aelurosaurus (Gorgonopsidae); C, Arctognathus (Gorgonopsidae); D, 1027 

Leontocephalus (Gorgonopsidae); E, Scylacops (Gorgonopsidae) ; F, Arctops 1028 

(Gorgonopsidae); G, Prorubidgea (Gorgonopsidae) ; H, Dinogorgon (Gorgonopsidae) ; I, 1029 

Rubidgea (Gorgonopsidae); J, Moschorhinus (Therocephalia); K, Theriognathus 1030 

(Therocephalia); L, Viatkosuchus (Therocephalia, original without scale bar); M, Regisaurus 1031 

(Therocephalia); N, Bauria (Therocephalia, original without scale); O, Dvinia (Cynodontia, 1032 

original without scale). Image sources: A, K, M-N, Kemp, 1982; B-I, Sigogneau-Russell, 1989; 1033 

J, Mendrez, 1974a; L, Tatarinov, 1995; O, Tatarinov, 1968. 1034 

 1035 

Sup-Fig. 4 Skulls of Parareptilia in palatal view.  A, Mesosaurus; B, Millerosaurus; C, 1036 

Lanthanosuchus; D, Acleistorhinus (Lanthanosuchidae); E, Belebey (Bolosauridae); F, 1037 

Nyctiphruretus; G, Procolophon (Procolophonoidea, original without scale); H, Owenetta 1038 

(Procolophonoidea); I, Scutosaurus (Pareiasauria); J, Pareiasuchus (Pareiasauria); K, 1039 

Macroleter ('nycteroleter'); L, Nycteroleter; M, Bashkyroleter mesensis ('nycteroleter', original 1040 

without scale). Image sources: A, Modesto, 2006; B,F,I, Carroll, 1988; C,D,  DeBraga & 1041 
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Reisz, 1996; E, Ivakhnenko & Tverdochlebova, 1987; G, Carroll & Lindsay, 1985; H, Reisz & 1042 

Scott, 2002; J, Lee et al. 1997; K, Tsuji, 2006; L, Tverdokhlebov & Ivakhnenko, 1984; M, 1043 

Ivakhnenko, 1997. 1044 

 1045 

Sup-Fig. 5 Skulls of eureptiles and basal diapsids (A-F), Sauropterygia (G–H), 1046 

Ichthyopterygia (I), and Lepidosauromorpha (J–Z) in palatal view: A, Captorhinus; B, 1047 

Paleothyris; C, Petrolacosaurus; D, Araeoscelis; E, Claudiosaurus; F, Youngina; G, Placodus; 1048 

H, Simosaurus;  I, Ichthyosaurus (original without scale); J, Kuehneosaurus; K, Marmoretta; L, 1049 

Gephyrosaurus (Rhynchocephalia); M, Clevosaurus (Rhynchocephalia) ; N, Sphenodon 1050 

(Rhynchocephalia); O, Hemitheconyx (Squamata, Gekkota); P, Tropidophorus (Squamata, 1051 

Scincoidea); Q, Lacerta (Squamata, Lacertoidea); R, Uromastyx (Squamata, Iguania); S, 1052 

Ctenosaura (Squamata, Iguania: original without scale); T, Xenosaurus (Squamata, 1053 

Anguimorpha); U, Ophisaurus (Squamata, Anguimorpha);  V,  Heloderma (Squamata, 1054 

Anguimorpha); W, Shinisaurus (Squamata, Anguimorpha) ; X, Varanus (Squamata, 1055 

Anguimorpha) ; Y, Platecarpus (Squamata, Mosasauria: original without scale); Z, Anilius, 1056 

Squamata, Serpentes). Image sources: A, Reisz & Sues, 2000; B, Benton, 2000; C, Reisz, 1057 

1981; D, Vaughn, 1955; E-G, Carroll, 1988; H, Rieppel, 1994; I,N,Y, Romer, 1956; J, 1058 

Robinson, 1962; K, Evans, 1991; L-M, Jones, 2006; O-X, Evans, 2008; Z, Cundall & Irish, 1059 

2008.  1060 

 1061 

Sup-Fig. 6 Skulls of Archosauromorpha in palatal views: A, Czatkowiella; B, Cteniogenys 1062 

(Choristodera); C, Proganochelys (Testudines); D, Mesosuchus (Rhynchosauria); E, 1063 

Trilophosaurus; F, Paradapedon (Rhynchosauria); G, Tanystropheus; H, Proterosuchus; I, 1064 

Euparkeria; J, Doswellia; K, Proterochampsa; L, Rutiodon (Phytosauria); M, Stagonolepis 1065 

(Aetosauria); N, Sphenosuchus (Crocodylomorpha); O, Ornithosuchus. Image sources: A, 1066 

Borsuk−Białynicka & Evans, 2009a; B, Evans, 1990; C, E, F, H, Carroll, 1988; D, Dilkes, 1067 

1998; G, Wild, 1987; I, Ewer, 1965; J, Weems, 1980; K, Sill, 1967; L-M, O, Kuhn, 1976; N, 1068 

Walker, 1990. 1069 
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  1071 
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Figure 2 1076 
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Figure 3 1078 
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Figure 4 1080 
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Figure 5 1082 



 42 

 1083 

Figure 6 1084 
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Figure 7 1086 
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Figure 8 1088 
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Figure 9 1090 
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Figure 10 1092 
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