79 research outputs found

    Polymorph exploration of bismuth stannate using first-principles phonon mode mapping

    Get PDF
    Accurately modelling polymorphism in crystalline solids remains a key challenge in computational chemistry. In this work, we apply a theoretically-rigorous phonon mode-mapping approach to understand the polymorphism in the ternary metal oxide Bi2Sn2O7. Starting from the high-temperature cubic pyrochlore aristotype, we systematically explore the structural potential-energy surface and recover the two known low-temperature phases alongside three new metastable phases, together with the transition pathways connecting them. This first-principles lattice-dynamics method is completely general and provides a practical means to identify and characterise the stable polymorphs and phase transitions in materials with complex crystal structures

    Amorphous Mixtures of Ice and C₆₀ Fullerene

    Get PDF
    Carbon and ice make up a substantial proportion of our universe. Recent space exploration has shown that these two chemical species often coexist such as on comets and asteroids and in the interstellar medium. Here, we prepare mixtures of C60 fullerene and H2O by vapor codeposition at 90 K with molar C60/H2O ratios ranging from 1:1254 to 1:5. The C60 percolation threshold is found between the 1:132 and 1:48 samples, corresponding to a transition from matrix-isolated C60 molecules to percolating C60 domains that confine H2O. Below this threshold, the crystallization and thermal desorption properties of H2O are not significantly affected by C60, whereas the crystallization temperature of H2O is shifted toward higher temperatures for the C60-rich samples. These C60-rich samples also display exotherms corresponding to the crystallization of C60 as the two components undergo phase separation. More than 60 vol % C60 is required to significantly affect the desorption properties of H2O. A thick blanket of C60 on top of pure amorphous ice is found to display large cracks due to water desorption. These findings may help us to understand the recently observed unusual surface features and the H2O weather cycle on the 67P/Churyumov–Gerasimenko comet

    Tunable thermal expansion in framework materials through redox intercalation

    Get PDF
    Thermal expansion properties of solids are of fundamental interest and control of thermal expansion is important for practical applications but can be difficult to achieve. Many framework-type materials show negative thermal expansion when internal cages are empty but positive thermal expansion when additional atoms or molecules fill internal voids present. Here we show that redox intercalation offers an effective method to control thermal expansion from positive to zero to negative by insertion of Li ions into the simple negative thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The small concentration of intercalated Li ions has a strong influence through steric hindrance of transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox intercalation of guest ions is thus likely to be a general and effective method for controlling thermal expansion in the many known framework materials with phonon-driven negative thermal expansion

    Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review

    Full text link
    • …
    corecore