71,500 research outputs found

    Johnson-Kendall-Roberts theory applied to living cells

    Get PDF
    Johnson-Kendall-Roberts (JKR) theory is an accurate model for strong adhesion energies of soft slightly deformable material. Little is known about the validity of this theory on complex systems such as living cells. We have addressed this problem using a depletion controlled cell adhesion and measured the force necessary to separate the cells with a micropipette technique. We show that the cytoskeleton can provide the cells with a 3D structure that is sufficiently elastic and has a sufficiently low deformability for JKR theory to be valid. When the cytoskeleton is disrupted, JKR theory is no longer applicable

    Product Measure Steady States of Generalized Zero Range Processes

    Full text link
    We establish necessary and sufficient conditions for the existence of factorizable steady states of the Generalized Zero Range Process. This process allows transitions from a site ii to a site i+qi+q involving multiple particles with rates depending on the content of the site ii, the direction qq of movement, and the number of particles moving. We also show the sufficiency of a similar condition for the continuous time Mass Transport Process, where the mass at each site and the amount transferred in each transition are continuous variables; we conjecture that this is also a necessary condition.Comment: 9 pages, LaTeX with IOP style files. v2 has minor corrections; v3 has been rewritten for greater clarit

    Rules for transition rates in nonequilibrium steady states

    Full text link
    Just as transition rates in a canonical ensemble must respect the principle of detailed balance, constraints exist on transition rates in driven steady states. I derive those constraints, by maximum information-entropy inference, and apply them to the steady states of driven diffusion and a sheared lattice fluid. The resulting ensemble can potentially explain nonequilibrium phase behaviour and, for steady shear, gives rise to stress-mediated long-range interactions.Comment: 4 pages. To appear in Physical Review Letter

    Diffusion and rheology in a model of glassy materials

    Full text link
    We study self-diffusion within a simple hopping model for glassy materials. (The model is Bouchaud's model of glasses [J.-P. Bouchaud, J. Physique I 2, 1705 (1992)], as extended to describe rheological properties [P. Sollich, F. Lequeux, P. Hebraud and M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997)].) We investigate the breakdown, near the glass transition, of the (generalized) Stokes-Einstein relation between self-diffusion of a tracer particle and the (frequency-dependent) viscosity of the system as a whole. This stems from the presence of a broad distribution of relaxation times of which different moments control diffusion and rheology. We also investigate the effect of flow (oscillatory shear) on self-diffusion and show that this causes a finite diffusivity in the temperature regime below the glass transition (where this was previously zero). At higher temperatures the diffusivity is enhanced by a power law frequency dependence that also characterises the rheological response. The relevance of these findings to soft glassy materials (foams, emulsions etc.) as well as to conventional glass-forming liquids is discussed.Comment: 39 page (double spaced), 2 figure

    Venus and Mars nominal natural environment for advanced manned planetary mission programs

    Get PDF
    Nominal natural environment values for advanced manned planetary space flights to Venus and Mar

    Investigations of electron emission characteristics of low work function surfaces Quarterly report, 28 Sep. - 27 Dec. 1966

    Get PDF
    Coadsorption of cesium and fluorine on tungsten, and analysis of mechanisms leading to decay of field emission current from low work function zirconium/oxygen coated tungsten emitte

    Probing molecular free energy landscapes by periodic loading

    Get PDF
    Single molecule pulling experiments provide information about interactions in biomolecules that cannot be obtained by any other method. However, the reconstruction of the molecule's free energy profile from the experimental data is still a challenge, in particular for the unstable barrier regions. We propose a new method for obtaining the full profile by introducing a periodic ramp and using Jarzynski's identity for obtaining equilibrium quantities from non-equilibrium data. Our simulated experiments show that this method delivers significant more accurate data than previous methods, under the constraint of equal experimental effort.Comment: 4 pages, 3 figure
    corecore