104 research outputs found

    Overcoming ecological feedbacks in seagrass restoration

    Get PDF
    Overcoming ecological feedbacks is a major limiting factor reducing the success of many seagrass restoration projects. Negative feedbacks occur when biotic or abiotic conditions of a site are changed sufficiently after the loss of seagrass to prevent its recovery, even after the original stressors are remediated. While negative feedbacks in seagrass restoration are common, there remain limited studies of ways to reduce them and kick-start the necessary positive feedbacks to promote recovery. We used field and laboratory experiments to investigate key ecological feedbacks in seagrass (Zostera marina) restoration by testing the role of hessian bags and seed burial in reducing seed predation and promoting plant development. We used a double-hurdle model approach to predict “seagrass emergence success” and “seagrass growth success” across planted field plots. We found that planting seeds in hessian bags and burying them in the sediment improved the likelihood of seeds developing into mature plants. We recorded an average 13-fold increase in shoot density for seeds planted in buried bags relative to raked furrows. This could be the combined result of reduced predation as well as bags mimicking emergent traits of mature seagrass to withstand physical impacts. We supplement these findings with laboratory evidence that hessian bags provide protection from predation by green shore crabs. Overall, we found a low and variable success rate for seed-based restoration and indicate other feedbacks in the system beyond those we controlled. However, we show that small methodological changes can help overcome some key feedbacks and improve restoration success

    Positive selection at high temperature reduces gene transcription in the bacteriophage ϕX174

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene regulation plays a central role in the adaptation of organisms to their environments. There are many molecular components to gene regulation, and it is often difficult to determine both the genetic basis of adaptation and the evolutionary forces that influence regulation. In multiple evolution experiments with the bacteriophage ϕX174, adaptive substitutions in <it>cis</it>-acting regulatory sequences sweep through the phage population as the result of strong positive selection at high temperatures that are non-permissive for laboratory-adapted phage. For one <it>cis</it>-regulatory region, we investigate the individual effects of four adaptive substitutions on transcript levels and fitness for phage growing on three hosts at two temperatures.</p> <p>Results</p> <p>The effect of the four individual substitutions on transcript levels is to down-regulate gene expression, regardless of temperature or host. To ascertain the conditions under which these substitutions are adaptive, fitness was measured by a variety of methods for several bacterial hosts growing at two temperatures, the control temperature of 37°C and the selective temperature of 42°C. Time to lysis and doublings per hour indicate that the four substitutions individually improve fitness over the ancestral strain at high temperature independent of the bacterial host in which the fitness was measured. Competition assays between the ancestral strain and either of two mutant strains indicate that both mutants out-compete the ancestor at high temperature, but the relative frequencies of each phage remain the same at the control temperature.</p> <p>Conclusions</p> <p>Our results strongly suggest that gene transcription plays an important role in influencing fitness in the bacteriophage ϕX174, and different point mutations in a single <it>cis</it>-regulatory region provided the genetic basis for this role in adaptation to high temperature. We speculate that the adaptive nature of these substitutions is due to the physiology of the host at high temperature or the need to maintain particular ratios of phage proteins during capsid assembly. Our investigation of regulatory evolution contributes to interpreting genome-level assessments of regulatory variation, as well as to understanding the molecular basis of adaptation.</p

    The results of an exploratory fishery cruise for Loligo Opalescens in southern and central California, June 5-25, 1974

    Get PDF
    During June 1974 the California Department of Fish and Game, in cooperation with the Sea Grant program at Moss Landing Marine Laboratories, conducted an exploratory fishing cruise that extended from La Jolla to Santa Cruz and included the Channel Islands, concentrating on inshore waters. The cruise was preliminary to the initiation of a major program of squid research and had six objectives: 1) To gather samples of market squid (Lo1igo opa1escens) for population, growth, aging and food chain studies. 2) To locate potential new fishing grounds. 3) To investigate methods for determining spawning intensity. 4) To gather data on oceanographic parameters of the spawning grounds. 5) To make incidental collections as requested by other investigators. 6) To familiarize Sea Grant personnel with the capabilities of the Department's largest research vessel, ALASKA, with respect to squid. Especially good weather and oceanographic conditions persisting throughout the cruise enabled us to make 66 night1ight stations, 17 midwater trawls and eight bottom trawls. Fishable concentrations of squid were discovered in the areas between Cape San Martin and Partington Point, between Pfeiffer Point and Point Sur, and in Carmel Bay, heretofore unfished. Squid spawning off Santa Cruz Island was observed utilizing an underwater observation chamber aboard the vessel. Mating and feeding behavior were observed in shipboard aquaria. PDF contains 28 pages

    Linking environmental variables with regional-scale variability in ecological structure and standing stock of carbon within UK kelp forests

    Get PDF
    Kelp forests represent some of the most productive and diverse habitats on Earth. Understanding drivers of ecological patterns at large spatial scales is critical for effective management and conservation of marine habitats. We surveyed kelp forests dominated by Laminaria hyperborea (Gunnerus) Foslie 1884 across 9° latitude and \u3e1000 km of coastline and measured a number of physical parameters at multiple scales to link ecological structure and standing stock of carbon with environmental variables. Kelp density, biomass, morphology and age were generally greater in exposed sites within regions, highlighting the importance of wave exposure in structuring L. hyperborea populations. At the regional scale, wave-exposed kelp canopies in the cooler regions (the north and west of Scotland) were greater in biomass, height and age than in warmer regions (southwest Wales and England). The range and maximal values of estimated standing stock of carbon contained within kelp forests was greater than in historical studies, suggesting that this ecosystem property may have been previously undervalued. Kelp canopy density was positively correlated with large-scale wave fetch and fine-scale water motion, whereas kelp canopy biomass and the standing stock of carbon were positively correlated with large-scale wave fetch and light levels and negatively correlated with temperature. As light availability and summer temperature were important drivers of kelp forest biomass, effective management of human activities that may affect coastal water quality is necessary to maintain ecosystem functioning, while increased temperatures related to anthropogenic climate change may impact the structure of kelp forests and the ecosystem services they provide

    From ocean sprawl to blue-green infrastructure:A UK perspective on an issue of global significance

    Get PDF
    Artificial structures are proliferating in the marine environment, resulting in ‘ocean sprawl’. In light of the potential environmental impacts of this, such as habitat loss and alteration, it is becoming increasingly important to incorporate ecologically-sensitive design into artificial marine structures. The principles of eco-engineering and green infrastructure are embedded in urban planning practice for terrestrial and freshwater development projects. In marine planning, however, eco-engineering of blue-green infrastructure remains an emerging concept. This note provides a UK perspective on the progress towards uptake of eco-engineering approaches for enhancing biodiversity on artificial marine structures. We emphasise that, despite a clear ‘policy pull’ to incorporate biodiversity enhancements in marine structures, a range of proof-of-concept evidence that it is possible to achieve, and strong cross-sectoral stakeholder support, there are still few examples of truly and purposefullydesigned blue-green artificial structures in the UK. We discuss the barriers that remain and propose a strategy towards effective implementation. Our strategy outlines a step-wise approach to: (1) strengthening the evidence base for what enhancements can be achieved in different scenarios; (2) improving clarity on the predicted benefits and associated costs of enhancements; (3) packaging the evidence in a useful form to support planning and decision-making; and (4) encouraging implementation as routine practice. Given that ocean sprawl is a growing problem globally, the perspective presented here provides valuable insight and lessons for other nations at their various states of progress towards this same goal

    Habitat Complexity Affects the Structure but Not the Diversity of Sessile Communities on Tropical Coastal Infrastructure

    Get PDF
    Increasing human population, urbanisation, and climate change have resulted in the proliferation of hard coastal infrastructure such as seawalls and breakwaters. There is increasing impetus to create multifunctional coastal defence structures with the primary function of protecting people and property in addition to providing habitat for marine organisms through eco-engineering - a nature-based solutions approach. In this study, the independent and synergistic effects of physical complexity and seeding with native oysters in promoting diversity and abundances of sessile organisms were assessed at two locations on Penang Island, Malaysia. Concrete tiles with varying physical and biological complexity (flat, 2.5 cm ridges and crevices, and 5 cm ridges and crevices that were seeded or unseeded with oysters) were deployed and monitored over 12 months. The survival of the seeded oysters was not correlated with physical complexity. The addition of physical and biological complexity interacted to promote distinct community assemblages, but did not consistently increase the richness, diversity, or abundances of sessile organisms through time. These results indicate that complexity, whether physical or biological, is only one of many influences on biodiversity on coastal infrastructure. Eco-engineering interventions that have been reported to be effective in other regions may not work as effectively in others due to the highly dynamic conditions in coastal environment. Thus, it is important that other factors such as the local species pools, environmental setting (e.g., wave action), biological factors (e.g., predators), and anthropogenic stressors (e.g., pollution) should also be considered when designing habitat enhancements. Such factors acting individually or synergistically could potentially affect the outcomes of any planned eco-engineering interventions.</jats:p

    Replicating natural topography on marine artificial structures:A novel approach to eco-engineering

    Get PDF
    Ocean sprawl is a growing threat to marine and coastal ecosystems globally, with wide-ranging consequences for natural habitats and species. Artificial structures built in the marine environment often support less diverse communities than natural rocky marine habitats because of low topographic complexity. Some structures can be eco-engineered to increase their complexity and promote biodiversity. Tried-and-tested eco-engineering approaches include building-in habitat designs to mimic features of natural reef topography that are important for biodiversity. Most designs mimic discrete microhabitat features like crevices or holes and are geometrically-simplified. Here we propose that directly replicating the full fingerprint of natural reef topography in habitat designs makes a novel addition to the growing toolkit of eco-engineering options. We developed a five-step process for designing natural topography-based eco-engineering interventions for marine artificial structures. Given that topography is highly spatially variable in rocky reef habitats, our targeted approach seeks to identify and replicate the ‘best’ types of reef topography to satisfy specific eco-engineering objectives. We demonstrate and evaluate the process by designing three natural topography-based habitat units for intertidal structures, each targeting one of three hypothetical eco-engineering objectives. The process described can be adapted and applied according to user-specific priorities. Expanding the toolkit for eco-engineering marine structures is crucial to enable ecologically-informed designs that maximise biodiversity benefits from burgeoning ocean sprawl

    Greening of grey infrastructure should not be used as a Trojan horse to facilitate coastal development

    Get PDF
    Climate change and coastal urbanization are driving the replacement of natural habitats with artificial structures and reclaimed land globally. These novel habitats are often poor surrogates for natural habitats. The application of integrated greening of grey infrastructure (IGGI) to artificial shorelines demonstrates how multifunctional structures can provide biodiversity benefits whilst simultaneously serving their primary engineering function. IGGI is being embraced globally, despite many knowledge gaps and limitations. It is a management tool to compensate anthropogenic impacts as part of the Mitigation Hierarchy. There is considerable scope for misuse and ‘greenwashing’ however, by making new developments appear more acceptable, thus facilitating the regulatory process. We encourage researchers to exercise caution when reporting on small-scale experimental trials. We advocate that greater attention is paid to when experiments ‘fail’ or yield unintended outcomes. We advise revisiting, repeating and expanding on experiments to test responses over broader spatio-temporal scales to improve the evidence base. Synthesis and applications. Where societal and economic demand makes development inevitable, particular attention should be paid to avoiding, minimizing and rehabilitating environmental impacts. Integrated greening of grey infrastructure (IGGI) should be implemented as partial compensation for environmental damage. Mutual benefits for both humans and nature can be achieved when IGGI is implemented retrospectively in previously developed or degraded environments. We caution, however, that any promise of net biodiversity gain from new developments should be scrutinized and any local ecological benefits set in the context of the wider environmental impacts. A ‘greened’ development will always impinge on natural systems, a reality that is much less recognized in the sea than on land.</p
    • 

    corecore