49 research outputs found
Moving forward through consensus: protocol for a modified Delphi approach to determine the top research priorities in the field of orthopaedic oncology.
IntroductionOrthopaedic oncology researchers face several obstacles in the design and execution of randomised controlled trials, including finite fiscal resources to support the rising costs of clinical research and insufficient patient volume at individual sites. As a result, high-quality research to guide clinical practice has lagged behind other surgical subspecialties. A focused approach is imperative to design a research programme that is economical, streamlined and addresses clinically relevant endpoints. The primary objective of this study will be to use a consensus-based approach to identify research priorities for international clinical trials in orthopaedic oncology.Methods and analysisWe will conduct a 3-phase modified Delphi method consisting of 2 sequential rounds of anonymous web-based questionnaires (phases I and II), and an in-person consensus meeting (phase III). Participants will suggest research questions that they believe are of particular importance to the field (phase I), and individually rate each proposed question on 5 criteria (phase II). Research questions that meet predetermined consensus thresholds will be brought forward to the consensus meeting (phase III) for discussion by an expert panel. Following these discussions, the expert panel will be asked to assign scores for each research question, and research questions meeting predetermined criteria will be brought forward for final ranking. The expert panel will then be asked to rank the top 3 research questions, and these 3 research questions will be distributed to the initial group of participants for validation.Ethics and disseminationAn ethics application is currently under review with the Hamilton Integrated Research Ethics Board in Hamilton, Ontario, Canada. The results of this initiative will be disseminated through peer-reviewed publications and conference presentations
Spinal cord morphology in degenerative cervical myelopathy patients ; assessing key morphological characteristics using Mmchine vision tools
ABSTRACT: Despite Degenerative Cervical Myelopathy (DCM) being the most common form of spinal cord injury, effective methods to evaluate patients for its presence and severity are only starting to appear. Evaluation of patient images, while fast, is often unreliable; the pathology of DCM is complex, and clinicians often have difficulty predicting patient prognosis. Automated tools, such as the Spinal Cord Toolbox (SCT), show promise, but remain in the early stages of development. To evaluate the current state of an SCT automated process, we applied it to MR imaging records from 328 DCM patients, using the modified Japanese Orthopedic Associate scale as a measure of DCM severity. We found that the metrics extracted from these automated methods are insufficient to reliably predict disease severity. Such automated processes showed potential, however, by highlighting trends and barriers which future analyses could, with time, overcome. This, paired with findings from other studies with similar processes, suggests that additional non-imaging metrics could be added to achieve diagnostically relevant predictions. Although modeling techniques such as these are still in their infancy, future models of DCM severity could greatly improve automated clinical diagnosis, communications with patients, and patient outcomes
Recommended from our members
Prophylactic antibiotic regimens in tumour surgery (PARITY): protocol for a multicentre randomised controlled study.
IntroductionLimb salvage with endoprosthetic reconstruction is the standard of care for the management of lower-extremity bone tumours in skeletally mature patients. The risk of deep postoperative infection in these procedures is high and the outcomes can be devastating. The most effective prophylactic antibiotic regimen remains unknown, and current clinical practice is highly varied. This trial will evaluate the effect of varying postoperative prophylactic antibiotic regimens on the incidence of deep infection following surgical excision and endoprosthetic reconstruction of lower-extremity bone tumours.Methods and analysisThis is a multicentre, blinded, randomised controlled trial, using a parallel two-arm design. 920 patients 15 years of age or older from 12 tertiary care centres across Canada and the USA who are undergoing surgical excision and endoprosthetic reconstruction of a primary bone tumour will receive either short (24 h) or long (5 days) duration postoperative antibiotics. Exclusion criteria include prior surgery or infection within the planned operative field, known colonisation with methicillin-resistant Staphylococcus aureus or vancomycin-resistant Enterococcus at enrolment, or allergy to the study antibiotics. The primary outcome will be rates of deep postoperative infections in each arm. Secondary outcomes will include type and frequency of antibiotic-related adverse events, patient functional outcomes and quality-of-life scores, reoperation and mortality. Randomisation will be blocked, with block sizes known only to the methods centre responsible for randomisation, and stratified by location of tumour and study centre. Patients, care givers and a Central Adjudication Committee will be blinded to treatment allocation. The analysis to compare groups will be performed using Cox regression and log-rank tests to compare survival functions at α=0.05.Ethics and disseminationThis study has ethics approval from the McMaster University/Hamilton Health Sciences Research Ethics Board (REB# 12-009). Successful completion will significantly impact on clinical practice and enhance patients' lives. More broadly, this trial will develop a network of collaboration from which further high-quality trials in Orthopaedic Oncology will follow
Interventions to Optimize Spinal Cord Perfusion in Patients With Acute Traumatic Spinal Cord Injury: An Updated Systematic Review
STUDY DESIGN: Systematic review update.
OBJECTIVES: Interventions that aim to optimize spinal cord perfusion are thought to play an important role in minimizing secondary ischemic damage and improving outcomes in patients with acute traumatic spinal cord injuries (SCIs). However, exactly how to optimize spinal cord perfusion and enhance neurologic recovery remains controversial. We performed an update of a recent systematic review (Evaniew et al, J. Neurotrauma 2020) to evaluate the effects of Mean Arterial Pressure (MAP) support or Spinal Cord Perfusion Pressure (SCPP) support on neurological recovery and rates of adverse events among patients with acute traumatic SCI.
METHODS: We searched PubMed/MEDLINE, EMBASE and ClinicalTrials.gov for new published reports. Two reviewers independently screened articles, extracted data, and evaluated risk of bias. We implemented the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach to rate confidence in the quality of the evidence.
RESULTS: From 569 potentially relevant new citations since 2019, we identified 9 new studies for inclusion, which were combined with 19 studies from a prior review to give a total of 28 studies. According to low or very low quality evidence, the effect of MAP support on neurological recovery is uncertain, and increased SCPP may be associated with improved neurological recovery. Both approaches may involve risks for specific adverse events, but the importance of these adverse events to patients remains unclear. Very low quality evidence failed to yield reliable guidance about particular monitoring techniques, perfusion ranges, pharmacological agents, or durations of treatment.
CONCLUSIONS: This update provides an evidence base to support the development of a new clinical practice guideline for the hemodynamic management of patients with acute traumatic SCI. While avoidance of hypotension and maintenance of spinal cord perfusion are important principles in the management of an acute SCI, the literature does not provide high quality evidence in support of a particular protocol. Further prospective, controlled research studies with objective validated outcome assessments are required to examine interventions to optimize spinal cord perfusion in this setting
Timing of Decompressive Surgery in Patients With Acute Spinal Cord Injury: Systematic Review Update
STUDY DESIGN: Systematic review and meta-analysis.
OBJECTIVE: Surgical decompression is a cornerstone in the management of patients with traumatic spinal cord injury (SCI); however, the influence of the timing of surgery on neurological recovery after acute SCI remains controversial. This systematic review aims to summarize current evidence on the effectiveness, safety, and cost-effectiveness of early (≤24 hours) or late (\u3e24 hours) surgery in patients with acute traumatic SCI for all levels of the spine. Furthermore, this systematic review aims to evaluate the evidence with respect to the impact of ultra-early surgery (earlier than 24 hours from injury) on these outcomes.
METHODS: A systematic search of the literature was performed using the MEDLINE database (PubMed), Cochrane database, and EMBASE. Two reviewers independently screened the citations from the search to determine whether an article satisfied predefined inclusion and exclusion criteria. For all key questions, we focused on primary studies with the least potential for bias and those that controlled for baseline neurological status and specified time from injury to surgery. Risk of bias of each article was assessed using standardized tools based on study design. Finally, the overall strength of evidence for the primary outcomes was assessed using the GRADE approach. Data were synthesized both qualitatively and quantitively using meta-analyses.
RESULTS: Twenty-one studies met inclusion and exclusion criteria and formed the evidence base for this review update. Seventeen studies compared outcomes between patients treated with early (≤24 hours from injury) compared to late (\u3e24 hours) surgical decompression. An additional 4 studies evaluated even earlier time frames:
CONCLUSIONS: This review provides an evidence base to support the update on clinical practice guidelines related to the timing of surgical decompression in acute SCI. Overall, the strength of evidence was moderate that early surgery (≤24 hours from injury) compared to late (\u3e24 hours) results in clinically meaningful improvements in neurological recovery. Further studies are required to delineate the role of ultra-early surgery in patients with acute SCI
A Clinical Practice Guideline for the Management of Patients With Acute Spinal Cord Injury: Recommendations on Hemodynamic Management
STUDY DESIGN: Clinical practice guideline development following the GRADE process.
OBJECTIVES: Hemodynamic management is one of the only available treatment options that likely improves neurologic outcomes in patients with acute traumatic spinal cord injury (SCI). Augmenting mean arterial pressure (MAP) aims to improve blood perfusion and oxygen delivery to the injured spinal cord in order to minimize secondary ischemic damage to neural tissue. The objective of this guideline was to update the 2013 AANS/CNS recommendations on the hemodynamic management of patients with acute traumatic SCI, acknowledging that much has been published in this area since its publication. Specifically, we sought to make recommendations on 1. The range of mean arterial pressure (MAP) to be maintained by identifying an upper and lower MAP limit; 2. The duration of such MAP augmentation; and 3. The choice of vasopressor. Additionally, we sought to make a recommendation on spinal cord perfusion pressure (SCPP) targets.
METHODS: A multidisciplinary guideline development group (GDG) was formed that included health care professionals from a wide range of clinical specialities, patient advocates, and individuals living with SCI. The GDG reviewed the 2013 AANS/CNS guidelines and voted on whether each recommendation should be endorsed or updated. A systematic review of the literature, following PRISMA standards and registered in PROSPERO, was conducted to inform the guideline development process and address the following key questions: (i) what are the effects of goal-directed interventions to optimize spinal cord perfusion on extent of neurological recovery and rates of adverse events at any time point of follow-up? and (ii) what are the effects of particular monitoring techniques, perfusion ranges, pharmacological agents, and durations of treatment on extent of neurological recovery and rates of adverse events at any time point of follow-up? The GDG combined the information from this systematic review with their clinical expertise in order to develop recommendations on a MAP target range (specifically an upper and lower limit to target), the optimal duration for MAP augmentation, and the use of vasopressors or inotropes. Using methods outlined by the GRADE working group, recommendations were formulated that considered the balance of benefits and harms, financial impact, acceptability, feasibility and patient preferences.
RESULTS: The GDG suggested that MAP should be augmented to at least 75-80 mmHg as the lower limit, but not actively augmented beyond an upper limit of 90-95 mmHg in order to optimize spinal cord perfusion in acute traumatic SCI. The quality of the evidence around the target MAP was very low, and thus the strength of this recommendation is weak. For duration of hemodynamic management, the GDG suggested that MAP be augmented for a duration of 3-7 days. Again, the quality of the evidence around the duration of MAP support was very low, and thus the strength of this recommendation is also weak. The GDG felt that a recommendation on the choice of vasopressor or the use of SCPP targets was not warranted, given the dearth of available evidence.
CONCLUSION: We provide new recommendations for blood pressure management after acute SCI that acknowledge the limitations of the current evidence on the relationship between MAP and neurologic recovery. It was felt that the low quality of existing evidence and uncertainty around the relationship between MAP and neurologic recovery justified a greater range of MAP to target, and for a broader range of days post-injury than recommended in previous guidelines. While important knowledge gaps still remain regarding hemodynamic management, these recommendations represent current perspectives on the role of MAP augmentation for acute SCI
A Clinical Practice Guideline for the Management of Patients With Acute Spinal Cord Injury: Recommendations on Hemodynamic Management
STUDY DESIGN
Clinical practice guideline development following the GRADE process.
OBJECTIVES
Hemodynamic management is one of the only available treatment options that likely improves neurologic outcomes in patients with acute traumatic spinal cord injury (SCI). Augmenting mean arterial pressure (MAP) aims to improve blood perfusion and oxygen delivery to the injured spinal cord in order to minimize secondary ischemic damage to neural tissue. The objective of this guideline was to update the 2013 AANS/CNS recommendations on the hemodynamic management of patients with acute traumatic SCI, acknowledging that much has been published in this area since its publication. Specifically, we sought to make recommendations on 1. The range of mean arterial pressure (MAP) to be maintained by identifying an upper and lower MAP limit; 2. The duration of such MAP augmentation; and 3. The choice of vasopressor. Additionally, we sought to make a recommendation on spinal cord perfusion pressure (SCPP) targets.
METHODS
A multidisciplinary guideline development group (GDG) was formed that included health care professionals from a wide range of clinical specialities, patient advocates, and individuals living with SCI. The GDG reviewed the 2013 AANS/CNS guidelines and voted on whether each recommendation should be endorsed or updated. A systematic review of the literature, following PRISMA standards and registered in PROSPERO, was conducted to inform the guideline development process and address the following key questions: (i) what are the effects of goal-directed interventions to optimize spinal cord perfusion on extent of neurological recovery and rates of adverse events at any time point of follow-up? and (ii) what are the effects of particular monitoring techniques, perfusion ranges, pharmacological agents, and durations of treatment on extent of neurological recovery and rates of adverse events at any time point of follow-up? The GDG combined the information from this systematic review with their clinical expertise in order to develop recommendations on a MAP target range (specifically an upper and lower limit to target), the optimal duration for MAP augmentation, and the use of vasopressors or inotropes. Using methods outlined by the GRADE working group, recommendations were formulated that considered the balance of benefits and harms, financial impact, acceptability, feasibility and patient preferences.
RESULTS
The GDG suggested that MAP should be augmented to at least 75-80 mmHg as the "lower limit," but not actively augmented beyond an "upper limit" of 90-95 mmHg in order to optimize spinal cord perfusion in acute traumatic SCI. The quality of the evidence around the "target MAP" was very low, and thus the strength of this recommendation is weak. For duration of hemodynamic management, the GDG "suggested" that MAP be augmented for a duration of 3-7 days. Again, the quality of the evidence around the duration of MAP support was very low, and thus the strength of this recommendation is also weak. The GDG felt that a recommendation on the choice of vasopressor or the use of SCPP targets was not warranted, given the dearth of available evidence.
CONCLUSION
We provide new recommendations for blood pressure management after acute SCI that acknowledge the limitations of the current evidence on the relationship between MAP and neurologic recovery. It was felt that the low quality of existing evidence and uncertainty around the relationship between MAP and neurologic recovery justified a greater range of MAP to target, and for a broader range of days post-injury than recommended in previous guidelines. While important knowledge gaps still remain regarding hemodynamic management, these recommendations represent current perspectives on the role of MAP augmentation for acute SCI
Timing of Decompressive Surgery in Patients With Acute Spinal Cord Injury: Systematic Review Update
STUDY DESIGN: Systematic review and meta-analysis.
OBJECTIVE: Surgical decompression is a cornerstone in the management of patients with traumatic spinal cord injury (SCI); however, the influence of the timing of surgery on neurological recovery after acute SCI remains controversial. This systematic review aims to summarize current evidence on the effectiveness, safety, and cost-effectiveness of early (≤24 hours) or late (\u3e24 hours) surgery in patients with acute traumatic SCI for all levels of the spine. Furthermore, this systematic review aims to evaluate the evidence with respect to the impact of ultra-early surgery (earlier than 24 hours from injury) on these outcomes.
METHODS: A systematic search of the literature was performed using the MEDLINE database (PubMed), Cochrane database, and EMBASE. Two reviewers independently screened the citations from the search to determine whether an article satisfied predefined inclusion and exclusion criteria. For all key questions, we focused on primary studies with the least potential for bias and those that controlled for baseline neurological status and specified time from injury to surgery. Risk of bias of each article was assessed using standardized tools based on study design. Finally, the overall strength of evidence for the primary outcomes was assessed using the GRADE approach. Data were synthesized both qualitatively and quantitively using meta-analyses.
RESULTS: Twenty-one studies met inclusion and exclusion criteria and formed the evidence base for this review update. Seventeen studies compared outcomes between patients treated with early (≤24 hours from injury) compared to late (\u3e24 hours) surgical decompression. An additional 4 studies evaluated even earlier time frames:
CONCLUSIONS: This review provides an evidence base to support the update on clinical practice guidelines related to the timing of surgical decompression in acute SCI. Overall, the strength of evidence was moderate that early surgery (≤24 hours from injury) compared to late (\u3e24 hours) results in clinically meaningful improvements in neurological recovery. Further studies are required to delineate the role of ultra-early surgery in patients with acute SCI
Interventions to Optimize Spinal Cord Perfusion in Patients With Acute Traumatic Spinal Cord Injury: An Updated Systematic Review
STUDY DESIGN: Systematic review update.
OBJECTIVES: Interventions that aim to optimize spinal cord perfusion are thought to play an important role in minimizing secondary ischemic damage and improving outcomes in patients with acute traumatic spinal cord injuries (SCIs). However, exactly how to optimize spinal cord perfusion and enhance neurologic recovery remains controversial. We performed an update of a recent systematic review (Evaniew et al, J. Neurotrauma 2020) to evaluate the effects of Mean Arterial Pressure (MAP) support or Spinal Cord Perfusion Pressure (SCPP) support on neurological recovery and rates of adverse events among patients with acute traumatic SCI.
METHODS: We searched PubMed/MEDLINE, EMBASE and ClinicalTrials.gov for new published reports. Two reviewers independently screened articles, extracted data, and evaluated risk of bias. We implemented the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach to rate confidence in the quality of the evidence.
RESULTS: From 569 potentially relevant new citations since 2019, we identified 9 new studies for inclusion, which were combined with 19 studies from a prior review to give a total of 28 studies. According to low or very low quality evidence, the effect of MAP support on neurological recovery is uncertain, and increased SCPP may be associated with improved neurological recovery. Both approaches may involve risks for specific adverse events, but the importance of these adverse events to patients remains unclear. Very low quality evidence failed to yield reliable guidance about particular monitoring techniques, perfusion ranges, pharmacological agents, or durations of treatment.
CONCLUSIONS: This update provides an evidence base to support the development of a new clinical practice guideline for the hemodynamic management of patients with acute traumatic SCI. While avoidance of hypotension and maintenance of spinal cord perfusion are important principles in the management of an acute SCI, the literature does not provide high quality evidence in support of a particular protocol. Further prospective, controlled research studies with objective validated outcome assessments are required to examine interventions to optimize spinal cord perfusion in this setting
An Update of a Clinical Practice Guideline for the Management of Patients With Acute Spinal Cord Injury: Recommendations on the Role and Timing of Decompressive Surgery
STUDY DESIGN
Clinical practice guideline development.
OBJECTIVES
Acute spinal cord injury (SCI) can result in devastating motor, sensory, and autonomic impairment; loss of independence; and reduced quality of life. Preclinical evidence suggests that early decompression of the spinal cord may help to limit secondary injury, reduce damage to the neural tissue, and improve functional outcomes. Emerging evidence indicates that "early" surgical decompression completed within 24 hours of injury also improves neurological recovery in patients with acute SCI. The objective of this clinical practice guideline (CPG) is to update the 2017 recommendations on the timing of surgical decompression and to evaluate the evidence with respect to ultra-early surgery (in particular, but not limited to, <12 hours after acute SCI).
METHODS
A multidisciplinary, international, guideline development group (GDG) was formed that consisted of spine surgeons, neurologists, critical care specialists, emergency medicine doctors, physical medicine and rehabilitation professionals, as well as individuals living with SCI. A systematic review was conducted based on accepted methodological standards to evaluate the impact of early (within 24 hours of acute SCI) or ultra-early (in particular, but not limited to, within 12 hours of acute SCI) surgery on neurological recovery, functional outcomes, administrative outcomes, safety, and cost-effectiveness. The GRADE approach was used to rate the overall strength of evidence across studies for each primary outcome. Using the "evidence-to-recommendation" framework, recommendations were then developed that considered the balance of benefits and harms, financial impact, patient values, acceptability, and feasibility. The guideline was internally appraised using the Appraisal of Guidelines for Research and Evaluation (AGREE) II tool.
RESULTS
The GDG recommended that early surgery (≤24 hours after injury) be offered as the preferred option for adult patients with acute SCI regardless of level. This recommendation was based on moderate evidence suggesting that patients were 2 times more likely to recover by ≥ 2 ASIA Impairment Score (AIS) grades at 6 months (RR: 2.76, 95% CI 1.60 to 4.98) and 12 months (RR: 1.95, 95% CI 1.26 to 3.18) if they were decompressed within 24 hours compared to after 24 hours. Furthermore, patients undergoing early surgery improved by an additional 4.50 (95% 1.70 to 7.29) points on the ASIA Motor Score compared to patients undergoing surgery after 24 hours post-injury. The GDG also agreed that a recommendation for ultra-early surgery could not be made on the basis of the current evidence because of the small sample sizes, variable definitions of what constituted ultra-early in the literature, and the inconsistency of the evidence.
CONCLUSIONS
It is recommended that patients with an acute SCI, regardless of level, undergo surgery within 24 hours after injury when medically feasible. Future research is required to determine the differential effectiveness of early surgery in different subpopulations and the impact of ultra-early surgery on neurological recovery. Moreover, further work is required to define what constitutes effective spinal cord decompression and to individualize care. It is also recognized that a concerted international effort will be required to translate these recommendations into policy