41 research outputs found

    Canopy urban heat island and its association with climate conditions in Dubai, UAE

    Get PDF
    The impact that climate change and urbanization are having on the thermal-energy balance of the built environment is a major environmental concern today. Urban heat island (UHI) is another phenomenon that can raise the temperature in cities. This study aims to examine the UHI magnitude and its association with the main meteorological parameters (i.e., temperature, wind speed, and wind direction) in Dubai, United Arab Emirates. Five years of hourly weather data (2014–2018) obtained from weather stations located in an urban, suburban, and rural area, were post-processed by means of a clustering technique. Six clusters characterized by different ranges of wind directions were analyzed. The analysis reveals that UHI is affected by the synoptic weather conditions (i.e., sea breeze and hot air coming from the desert) and is larger at night. In the urban area, air temperature and night-time UHI intensity, averaged on the five year period, are 1.3 °C and 3.3 °C higher with respect to the rural area, respectively, and the UHI and air temperature are independent of each other only when the wind comes from the desert. A negative and inverse correlation was found between the UHI and wind speed for all the wind directions, except for the northern wind where no correlation was observed. In the suburban area, the UHI and both temperatures and wind speed ranged between the strong and a weak negative correlation considering all the wind directions, while a strong negative correlation was observed in the rural area. This paper concludes that UHI intensity is strongly associated with local climatic parameters and to the changes in wind direction

    Thermal comfort standards in the Middle East: Current and future challenges

    Get PDF
    Cooling energy demand has increased three-fold in the Middle East (ME) over the last 30-years. This is driven by the need to maintain thermal comfort in an extremely hot climate, and supported by rising incomes, falling costs of air-conditioning and growth in the number of buildings. The definition of thermal comfort in these buildings is drawn from “international” standards, which, though empirically derived, have no basis data from this region. Hence, we ask, to what extent do indoor conditions in the ME fall within the standards recommended range of thermal comfort, and when they do, whether they are found to be comfortable by their occupants. We present the first large-scale study of thermal comfort in the ME, consisting of two approaches: (i) a meta-analysis of data from existing studies, (ii) independent field data covering four countries representing 27% of the region's population, 31 air-conditioned buildings of different types, including “green” buildings, and 1,101 subjects. The meta-analysis demonstrates that current thermal comfort standards fail to predict thermal sensation of 94% of occupants. Our own data show that, while indoor conditions are within standards-recommended ranges 58% of the time, only 40% of occupants find these conditions acceptable. We find evidence of overcooling in summers, with 39% occupants expressing cold discomfort. Computer models suggest that this is likely to have increased annual cooling energy demand between 13% and 20%, compared to non-overcooled conditions. These results suggest the necessity of localised thermal comfort standards that mitigate excess cooling energy demand, without compromising occupant thermal comfort.</p

    Solar hydrogen system for cooking applications: Experimental and numerical study

    Get PDF
    This paper describes the development of a semi-empirical numerical model for a solar hydrogen system consisting of a proton exchange membrane electrolyser (PEM) powered by photovoltaic panels to produce hydrogen as fuel for cooking applications, focussing on Jamaica as a suitable case-study. The model was developed in TRNSYS and includes a novel numerical component based on FORTRAN to model the operation of the PEM electrolyser. The numerical component was developed based on operational data from a purpose constructed small-scale experimental rig. The numerical model was calibrated using data from the experimental rig powered by operational data from a photovoltaic panel system in the UK and predicted photovoltaic panel power data from Jamaica. For the test conditions, experiments indicated an electrolysis maximum efficiency of 63.6%. The calibrated model was used to develop a case study analysis for a small community in Jamaica with a daily cooking demand of 39.6kWh or 1.7kg of H2 gas. Simulations indicate that the H2 production plan is sufficient for the cooking needs of the case-study.This project is partly funded by ACP Caribbean & Pacific Research Programme for Sustainable Development of the European Union (EuropeAid/130381/D/ACT/ACP)
    corecore