7 research outputs found

    Composite macroH2A/NRF-1 Nucleosomes Suppress Noise and Generate Robustness in Gene Expression

    Get PDF
    SummaryThe histone variant macroH2A (mH2A) has been implicated in transcriptional repression, but the molecular mechanisms that contribute to global mH2A-dependent genome regulation remain elusive. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with transcriptional profiling in mH2A knockdown cells, we demonstrate that singular mH2A nucleosomes occupy transcription start sites of subsets of both expressed and repressed genes, with opposing regulatory consequences. Specifically, mH2A nucleosomes mask repressor binding sites in expressed genes but activator binding sites in repressed genes, thus generating distinct chromatin landscapes that limit genetic or extracellular inductive signals. We show that composite nucleosomes containing mH2A and NRF-1 are stably positioned on gene regulatory regions and can buffer transcriptional noise associated with antiviral responses. In contrast, mH2A nucleosomes without NRF-1 bind promoters weakly and mark genes with noisier gene expression patterns. Thus, the strategic position and stabilization of mH2A nucleosomes in human promoters defines robust gene expression patterns

    Developmental activation of the lysozyme gene in chicken macrophage cells is linked to core histone acetylation at its enhancer elements

    Get PDF
    Native chromatin IP assays were used to define changes in core histone acetylation at the lysozyme locus during developmental maturation of chicken macrophages and stimulation to high-level expression by lipo-polysaccharide. In pluripotent precursors the lysozyme gene (Lys) is inactive and there is no acetylation of core histones at the gene, its promoter or at the upstream cis-control elements. In myeloblasts, where there is a very low level of Lys expression, H4 acetylation appears at the cis-control elements but not at the Lys gene or its promoter: neither H3 nor H2B become significantly acetylated in myeloblasts. In mature macrophages, Lys expression increases 5-fold: H4, H2B and H2A.Z are all acetylated at the cis-control elements but H3 remains unacetylated except at the −2.4 S silencer. Stimulation with LPS increases Lys expression a further 10-fold: this is accompanied by a rise in H3 acetylation throughout the cis-control elements; H4 and H2B acetylation remain substantial but acetylation at the Lys gene and its promoter remains low. Acetylation is thus concentrated at the cis-control elements, not at the Lys gene or its immediate promoter. H4 acetylation precedes H3 acetylation during development and H3 acetylation is most directly linked to high-level Lys expression

    Developmental activation of the lysozyme gene in chicken macrophage cells is linked to core histone acetylation at its enhancer elements

    Get PDF
    Native chromatin IP assays were used to define changes in core histone acetylation at the lysozyme locus during developmental maturation of chicken macrophages and stimulation to high-level expression by lipo-polysaccharide. In pluripotent precursors the lysozyme gene (Lys) is inactive and there is no acetylation of core histones at the gene, its promoter or at the upstream cis-control elements. In myeloblasts, where there is a very low level of Lys expression, H4 acetylation appears at the cis-control elements but not at the Lys gene or its promoter: neither H3 nor H2B become significantly acetylated in myeloblasts. In mature macrophages, Lys expression increases 5-fold: H4, H2B and H2A.Z are all acetylated at the cis-control elements but H3 remains unacetylated except at the −2.4 S silencer. Stimulation with LPS increases Lys expression a further 10-fold: this is accompanied by a rise in H3 acetylation throughout the cis-control elements; H4 and H2B acetylation remain substantial but acetylation at the Lys gene and its promoter remains low. Acetylation is thus concentrated at the cis-control elements, not at the Lys gene or its immediate promoter. H4 acetylation precedes H3 acetylation during development and H3 acetylation is most directly linked to high-level Lys expression
    corecore