34 research outputs found

    IgA vasculitis

    Full text link

    Pathophysiology and clinical manifestations of immune complex vasculitides

    Get PDF
    Immune complex (IC) vasculitides present inflammations of vessel walls associated with perivascular deposition of immunoglobulins (Igs), mostly ICs. They encompass systemic and skin-limited variants of IgA vasculitis (IgAV), cryoglobulinemic vasculitis (CV), rheumatoid, lupus, and hypocomplementemic vasculitides, serum sickness cutaneous IgM/IgG (non-IgA) vasculitis, and recurrent macular (hypergammaglobulinemic or exertion-induced) vasculitis. Serum sickness and CV fulfill the criteria of a type III hypersensitivity immune reaction as large lattices of the IC precipitate at vessel walls and activate polymorphonuclear neutrophils (PMNs). Immunoglobulin-A vasculitis differs with regard to the causes of perivascular deposition of ICs since here many IgA1 molecules are hypoglycosylated (Gd-IgA1), which appears to facilitate their perivascular deposition in skin and mesangium (via e.g. CD71). The reasons for increased generation of immunoglobulins or formation of IC and their perivascular deposition in either skin or systemic organs are different and not fully explored. A common denominator of OC vasculitides is the activation of PMNs near the vessel wall via Fcy or Fcα receptors. Acute episodes of IgAV additionally require PMNs to become preactivated by IgA1 or by IC already in circulation. This intravascular priming results in increased adherence and subsequently vessel-destructive NETosis when they encounter IgA deposited at the vessel walls. Binding of IgA1 to PMNs in blood stream is associated with increased serum levels of hypogalactosidated IgA1. The characteristic clinical picture of IgAV (and also of so-called IgG/IgM vasculitis) comprises palpable or retiform purpura with a clear predilection for lower legs, probably due to stasis-related reduction in blood velocity, while in other IC vasculitides, additional factors influence the sites of vasculitides. Our knowledge of distinct forms and different pathophysiological pathways of IC vasculitides may lead to in efficacious or targeted therapies. Antibodies to complement components or intestinal budesonide for IgAV are promising agents (the latter suppresses the pathophysiologically related IgA nephropathy by reducing the generation of mucosal IgA

    Pathophysiology and clinical manifestations of immune complex vasculitides

    No full text
    Immune complex (IC) vasculitides present inflammations of vessel walls associated with perivascular deposition of immunoglobulins (Igs), mostly ICs. They encompass systemic and skin-limited variants of IgA vasculitis (IgAV), cryoglobulinemic vasculitis (CV), rheumatoid, lupus, and hypocomplementemic vasculitides, serum sickness cutaneous IgM/IgG (non-IgA) vasculitis, and recurrent macular (hypergammaglobulinemic or exertion-induced) vasculitis. Serum sickness and CV fulfill the criteria of a type III hypersensitivity immune reaction as large lattices of the IC precipitate at vessel walls and activate polymorphonuclear neutrophils (PMNs). Immunoglobulin-A vasculitis differs with regard to the causes of perivascular deposition of ICs since here many IgA1 molecules are hypoglycosylated (Gd-IgA1), which appears to facilitate their perivascular deposition in skin and mesangium (via e.g. CD71). The reasons for increased generation of immunoglobulins or formation of IC and their perivascular deposition in either skin or systemic organs are different and not fully explored. A common denominator of OC vasculitides is the activation of PMNs near the vessel wall via Fcy or Fcα receptors. Acute episodes of IgAV additionally require PMNs to become preactivated by IgA1 or by IC already in circulation. This intravascular priming results in increased adherence and subsequently vessel-destructive NETosis when they encounter IgA deposited at the vessel walls. Binding of IgA1 to PMNs in blood stream is associated with increased serum levels of hypogalactosidated IgA1. The characteristic clinical picture of IgAV (and also of so-called IgG/IgM vasculitis) comprises palpable or retiform purpura with a clear predilection for lower legs, probably due to stasis-related reduction in blood velocity, while in other IC vasculitides, additional factors influence the sites of vasculitides. Our knowledge of distinct forms and different pathophysiological pathways of IC vasculitides may lead to in efficacious or targeted therapies. Antibodies to complement components or intestinal budesonide for IgAV are promising agents (the latter suppresses the pathophysiologically related IgA nephropathy by reducing the generation of mucosal IgA.</jats:p

    Addition of cyclophosphamide to steroids provides no benefit compared with steroids alone in treating adult patients with severe Henoch Schönlein Purpura

    Get PDF
    Henoch Schönlein Purpura (HSP) is a common disease in children, usually associated with a good prognosis. In adults there are no prospective studies concerning its prognosis or treatment, especially in cases of severe visceral involvement. Here we compared steroid therapy without or with cyclophosphamide co-treatment in adults with severe HSP in a 12-month, multi-center, prospective, open-label trial that treated 54 adults with biopsy-proven HSP including proliferative glomerulonephritis and severe visceral manifestations. All received steroids; however, 25 were randomized to also receive cyclophosphamide. The primary endpoint that occurred in three patients in each group was complete disease remission defined as zero on the Birmingham Vasculitis Activity Score with no persistent or new clinical and/or biological vasculitis at 6 months. No patient had active visceral involvement. The secondary endpoints were renal outcome, deaths, and adverse events at 12 months. Renal function, proteinuria, safety data, incidence of diabetes, and severe infections were similar between the two groups. At the last follow-up, renal function remained stable. The small population size of our study does not permit definitive conclusions; however, we suggest that treatment of adults with severe HSP by adding cyclophosphamide provides no benefit compared with steroids alone
    corecore