14 research outputs found

    Phase I Study of Ipilimumab Combined with Whole Brain Radiation Therapy or Radiosurgery for Melanoma Patients with Brain Metastases

    Get PDF
    Purpose: We performed a phase I study to determine the maximum tolerable dose (MTD) and safety of ipilimumab with stereotactic radiosurgery (SRS) or whole brain radiotherapy (WBRT) in patients with brain metastases (BM) from melanoma. Methods: Based on intracranial (IC) disease burden, patients were treated with WBRT (Arm A) or SRS (Arm B). Ipilimumab starting dose was 3 mg/kg (every 3 weeks, starting on day 3 of WBRT or 2 days after SRS). Ipilimumab was escalated to 10 mg/kg using a two-stage, 3+3 design. The primary endpoint was to determine the MTD of ipilimumab combined with radiotherapy. Secondary endpoints were overall survival (OS), IC and extracranial (EC) control, progression free survival (PFS), and toxicity. This trial is regis- tered with ClinicalTrials.gov, number NCT01703507. Results: Characteristics of the 16 patients enrolled between 2011 and 2014 were: mean age, 60; median BM, 2 (1 to \u3e10); number with EC disease, 13 (81%). Treatment included WBRT (n=5), SRS (n=11), ipilimumab 3mg/kg (n=7), 10 mg/kg (n=9). Median follow-up was 8 months (Arm A) and 10.5 months (Arm B). There were 21 grade 1-2 neuro- toxic effects with no dose-limiting toxicities (DLTs). One patient experienced grade 3 neurotoxicity prior to ipilimumab administration. Ten additional grade 3 toxicities were reported with gastrointestinal (n=5, 31%) as the most common. There were no grade 4/5 toxicities. Median PFS and OS, respectively, in Arm A were 2.5 months and 8 months, and in Arm B were 2.1 months and not reached. Conclusion: Concurrent ipilimumab 10 mg/kg with SRS is safe. The WBRT arm was closed early due to slow accrual, but demonstrated safety with ipilimumab 3 mg/kg. No patient experienced DLT. Larger studies with ipilimumab 10 mg/kg and SRS are warranted

    Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: A State of the ART Review From NRG Oncology

    Get PDF
    The integration of adaptive radiation therapy (ART), or modifying the treatment plan during the treatment course, is becoming more widely available in clinical practice. ART offers strong potential for minimizing treatment-related toxicity while escalating or de-escalating target doses based on the dose to organs at risk. Yet, ART workflows add complexity into the radiation therapy planning and delivery process that may introduce additional uncertainties. This work sought to review presently available ART workflows and technological considerations such as image quality, deformable image registration, and dose accumulation. Quality assurance considerations for ART components and minimum recommendations are described. Personnel and workflow efficiency recommendations are provided, as is a summary of currently available clinical evidence supporting the implementation of ART. Finally, to guide future clinical trial protocols, an example ART physician directive and a physics template following standard NRG Oncology protocol is provided

    Increasing Radiation Dose to the Thoracic Marrow Is Associated With Acute Hematologic Toxicities in Patients Receiving Chemoradiation for Esophageal Cancer

    Get PDF
    Purpose: To test the hypothesis that increasing radiation dose to the thoracic marrow (TM) contributes to the development of hematologic toxicities (HT) in esophageal cancer (EC) patients receiving chemoradiation therapy (CRT).Methods: We identified EC cases treated with curative intent CRT at our institution from 2007 to 2016. The TM was contoured as the union of the vertebral bodies (VB) from T1-L1, the ribs from T1-L1, and the sternum. The TM-mean dose and the TM volume receiving at least 5–50 Gy (V5-V50) were collected. Grade ≥ 3 HT (HT3+) was the primary endpoint. Normal tissue complication probability (NTCP) was evaluated using the Lyman-Kutcher-Burman (LKB) model. Logistic regression was used to test associations between HT3+ and dosimetric parameters. Odds ratios (OR) and 95% confidence intervals (CI) are reported with p < 0.05 considered significant. Receiver operating characteristics analysis was used to determine optimal cut points.Results: We identified 137 EC cases, and most received concurrent carboplatin/paclitaxel (N = 83). Median radiation dose was 50.4 Gy (IQR = 50.4–50.4 Gy). The rate of HT3+ was 39.4%. Optimization of the LKB model yielded the results n = 0.70, m = 0.67, and TD50 = 20.1 Gy. The TM-V30 was most strongly associated with HT3+ and on multivariate analysis, patients with TM-V30 ≥ 14% had a 5.7-fold (95% CI 2.42–14.54, p < 0.001) increased odds of HT3+ in the entire cohort and a 4-fold (95% CI 1.54–11.11, p = 0.006) increased odds of HT3+ in the carboplatin/paclitaxel cohort compared to patients with TM-V30 < 14%. Radiation dose to the VB and rib sub-sites of the TM were also associated with HT3+, particularly VB-V40.Conclusion: We found that increasing TM radiation dose was associated with HT3+ in EC patients treated with CRT. Radiation dose to the VB and rib sub-sites were also associated with HT3+. These findings suggest that limiting radiation dose to the TM (or its sub-sites) may be sufficient to decrease HT3+, but further prospective evaluation of these results is needed

    Delivery of Online Adaptive MRI-Guided Radiation Therapy for a Deaf Patient.

    No full text
    MRI-guided radiation therapy (MRgRT) enables real-time imaging during treatment and daily online adaptive planning. It is particularly useful for areas of treatment that have been previously excluded or restricted from ablative doses due to potential damage to adjacent normal tissue. In certain cases, ablative doses to metastatic lesions may be justified and treated with MRgRT using video-assisted gated breath-hold adjustments throughout delivery. The workflow relies on patient biofeedback and auditory cues. A 74-year-old deaf male with a history of prostate cancer status post prostatectomy was found to have an enlarged cervical lymph node, which was excised with histopathology demonstrating Merkel cell carcinoma. Approximately one year after treatment with two cycles of pembrolizumab, which was subsequently discontinued due to toxicity, surveillance imaging demonstrated an enlarging left adrenal nodule. It was initially stable for an additional seven months with pembrolizumab rechallenge but was again found enlarged on subsequent imaging. The patient underwent MRg stereotactic body radiation therapy (MRgSBRT) to a total dose of 60 Gy in five fractions to this isolated site of progression. The patient was equipped with mirrored glasses to view the tracking structure with respect to gating the boundary structure, and the traditional reliance on verbal cues for coaching was reimagined to rely on visual cues instead. Follow-up positron emission tomography/CT (PET/CT) two weeks after treatment demonstrated interval resolution of the left adrenal metastatic nodule and a return to symmetric bilateral adrenal gland metabolic activity. The necessary MRgSBRT treatment for single metastatic lesions near normal tissue structures relies on verbal cues and coaching. However, deaf patients are unable to receive this treatment according to the traditional workflow model. Unique opportunities exist for the implementation of culturally competent care for the Deaf community, relying more heavily on visual cues, in radiation oncology practice

    GUCY2C Signaling Opposes the Acute Radiation-Induced GI Syndrome.

    Get PDF
    High doses of ionizing radiation induce acute damage to epithelial cells of the gastrointestinal (GI) tract, mediating toxicities restricting the therapeutic efficacy of radiation in cancer and morbidity and mortality in nuclear disasters. No approved prophylaxis or therapy exists for these toxicities, in part reflecting an incomplete understanding of mechanisms contributing to the acute radiation-induced GI syndrome (RIGS). Guanylate cyclase C (GUCY2C) and its hormones guanylin and uroguanylin have recently emerged as one paracrine axis defending intestinal mucosal integrity against mutational, chemical, and inflammatory injury. Here, we reveal a role for the GUCY2C paracrine axis in compensatory mechanisms opposing RIGS. Eliminating GUCY2C signaling exacerbated RIGS, amplifying radiation-induced mortality, weight loss, mucosal bleeding, debilitation, and intestinal dysfunction. Durable expression of GUCY2C, guanylin, and uroguanylin mRNA and protein by intestinal epithelial cells was preserved following lethal irradiation inducing RIGS. Oral delivery of the heat-stable enterotoxin (ST), an exogenous GUCY2C ligand, opposed RIGS, a process requiring p53 activation mediated by dissociation from MDM2. In turn, p53 activation prevented cell death by selectively limiting mitotic catastrophe, but not apoptosis. These studies reveal a role for the GUCY2C paracrine hormone axis as a novel compensatory mechanism opposing RIGS, and they highlight the potential of oral GUCY2C agonists (Linzess; Trulance) to prevent and treat RIGS in cancer therapy and nuclear disasters. Cancer Res; 77(18); 5095-106. ©2017 AACR

    Magnetic Resonance-Guided Stereotactic Body Radiation Therapy/Hypofractionated Radiation therapy for Metastatic and Primary Central and Ultracentral Lung Lesions

    No full text
    Introduction: The recent results from the Nordic-HILUS study indicate stereotactic body radiation therapy (SBRT) is associated with high-grade toxicity for ultracentral (UC) tumors. We hypothesized that magnetic resonance-guided SBRT (MRgSBRT) or hypofractionated radiation therapy (MRgHRT) enables the safe delivery of high-dose radiation to central and UC lung lesions. Methods: Patients with UC or central lesions were treated with MRgSBRT/MRgHRT with real-time gating or adaptation. Central lesions were defined as per the Radiation Therapy Oncology Group and UC as per the HILUS study definitions: (1) group A or tumors less than 1 cm from the trachea and/or mainstem bronchi; or (2) group B or tumors less than 1 cm from the lobar bronchi. The Kaplan-Meier estimate and log-rank test were used to estimate survival. Associations between toxicities and other patient factors were tested using the Mann-Whitney U test and Fisher’s exact test. Results: A total of 47 patients were included with a median follow-up of 22.9 months (95% confidence interval: 16.4–29.4). Most (53%) had metastatic disease. All patients had central lesions and 55.3% (n = 26) had UC group A. The median distance from the proximal bronchial tree was 6.0 mm (range: 0.0–19.0 mm). The median biologically equivalent dose (α/β = 10) was 105 Gy (range: 75–151.2). The most common radiation schedule was 60 Gy in eight fractions (40.4%). Most (55%) had previous systemic therapy, 32% had immunotherapy and 23.4% had previous thoracic radiation therapy. There were 16 patients who underwent daily adaptation. The 1-year overall survival was 82% (median = not reached), local control 87% (median = not reached), and progression-free survival 54% (median = 15.1 mo, 95% confidence interval: 5.1–25.1). Acute toxicity included grade 1 (26%) and grade 2 (21%) with only two patients experiencing grade 3 (4.3%) in the long term. No grade 4 or 5 toxicities were seen. Conclusions: Previous studies noted high rates of toxicity after SBRT to central and UC lung lesions, with reports of grade 5 toxicities. In our cohort, the use of MRgSBRT/MRgHRT with high biologically effective doses was well tolerated, with two grade 3 toxicities and no grade 4/5

    Stereotactic radiosurgery and anti-PD-1 + CTLA-4 therapy, anti-PD-1 therapy, anti-CTLA-4 therapy, BRAF/MEK inhibitors, BRAF inhibitors, or conventional chemotherapy for the management of melanoma brain metastases.

    No full text
    BACKGROUND: Immunotherapy and targeted BRAF/MEK inhibitors (i) have revolutionised the systemic management of advanced melanoma. Given the role of stereotactic radiosurgery (SRS) in the local management of brain metastases, we sought to evaluate clinical outcomes in patients with melanoma brain metastases (MBM) treated with SRS and various systemic therapies. METHODS: Patients were included if MBM were diagnosed and treated with SRS within 3 months of receiving anti-PD-1+CTLA-4 therapy, anti-PD-1 therapy, anti-CTLA-4 therapy, BRAF/MEK-i, BRAF-i, or conventional chemotherapy. Comparisons between groups were made for overall survival (OS), distant MBM control, local MBM, systemic progression-free survival (sPFS), and neurotoxicity. RESULTS: In total, 257 patients with 1048 MBM treated over 368 SRS sessions between 2011 and 2020 were identified. On MVA, treatment with anti-PD1+anti-CTLA-4, anti-PD-1, and BRAF/MEK-i improved distant intracranial control over conventional chemotherapy. No significant differences were noted in local control (LC) between groups (p = 0.78). Kaplan-Meier OS at 12 months for anti-PD-1 + CTLA-4 therapy, anti-PD-1 therapy, anti-CTLA-4 therapy, BRAF/MEK-i, BRAF-i, and conventional chemotherapy was 68%, 59%, 45%, 62%, 21%, and 15%, respectively (p = CONCLUSIONS: This is among the largest series evaluating MBM treated with SRS and various systemic therapy regimens. Our analysis noted significant differences in OS, distant MBM control, and sPFS by systemic therapy. No differences in LC or radiation necrosis risk were noted
    corecore