17 research outputs found

    Lanthanide and transition metal complexes of nitrogen and oxygen donor macrocyclic ligands

    Get PDF
    This thesis is concerned with the synthesis and characterisation of altogether twenty 18- and 24-membered macrocyclic ligands, incorporating the pyridyl and phenolic substituents in the cavity, coupled with their lanthanide and transition metal complexes. Initially a survey of the synthesis and characteristics of related macrocycles is presented. The application of lanthanide metal complexes as contrast agents for magnetic resonance imaging (MRI) is discussed

    D1.15 Impact Assessment Report for RP 2

    Get PDF
    This deliverable provides the impact assessment report for RP2 (M16-M30). It provides an update on the overall and specific objectives of the EXCELSIOR project that have been achieved within RP2. This task undertakes the establishment of a methodology for the yearly monitoring of the impact of the different activities carried out by Eratosthenes Centre of Excellence (ECoE) and its partners through EXCELSIOR against a set of quantified targets. The list of Key Performance Indicators established in D1.12 has been revised based on the comments received by the EXCELSIOR project reviewers on 23 June 2021 following the first project review. This list is hereby updated to reflect the activities of RP2. By monitoring the impact for the RP2, it will provide direction of the activities needed to fulfil the KPIs for the following reporting periods. The impact assessment report will be used to assess the implementation of the work plan and adjust the activities in agreement with WP and task Leaders to ensure the achievement of the Project’s strategic objectives. WP1 provides the KPI monitoring framework and general quality processes, while the WP3 defines concrete actions affecting all other WPs for meeting the Impact KPIs. This task’s activities will be coordinated with WP3 activities on strategy definition as a continuous process, in order to update the human resources, infrastructure acquisition and overall work plan and to meet new priorities identified. The analysis outputs will update the Project Action Plan of Task 1.1. The following activities were examined and assessed according to the KPIs. These activities include proposals, dissemination events, publications, academia, networks, etc. The impact for each activity was also included

    Earth Observation in the EMMENA Region: Scoping Review of Current Applications and Knowledge Gaps

    Get PDF
    Earth observation (EO) techniques have significantly evolved over time, covering a wide range of applications in different domains. The scope of this study is to review the research conducted on EO in the Eastern Mediterranean, Middle East, and North Africa (EMMENA) region and to identify the main knowledge gaps. We searched through the Web of Science database for papers published between 2018 and 2022 for EO studies in the EMMENA. We categorized the papers in the following thematic areas: atmosphere, water, agriculture, land, disaster risk reduction (DRR), cultural heritage, energy, marine safety and security (MSS), and big Earth data (BED); 6647 papers were found with the highest number of publications in the thematic areas of BED (27%) and land (22%). Most of the EMMENA countries are surrounded by sea, yet there was a very small number of studies on MSS (0.9% of total number of papers). This study detected a gap in fundamental research in the BED thematic area. Other future needs identified by this study are the limited availability of very high-resolution and near-real-time remote sensing data, the lack of harmonized methodologies and the need for further development of models, algorithms, early warning systems, and services

    ERATOSTHENES: Excellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment through the EXCELSIOR Horizon 2020 Teaming Project

    Get PDF
    Geophysical Research Abstracts, 2018, Volume 20, EGU2018-7390The aim of this paper is to present our vision to upgrade the existing ERATOSTHENES Research Centre (ERC) established within the Cyprus University of Technology (CUT) into a sustainable, viable and autonomous Centre of Excellence (CoE) for Earth Surveillance and Space-Based Monitoring of the Environment, which will provide the highest quality of related services on the National, European and International levels. EXCELSIOR is a Horizon 2020 Teaming project which addresses a specific challenge defined by the work program, namely, the reduction of substantial disparities in the European Union by supporting research and innovation activities and systems in low performing countries. It also aims at establishing long-term and strategic partnerships between the Teaming partners, thus reducing internal research and innovation disparities within European Research and Innovation landscape. The proposed CoE envisions the upgrading of the existing ERC into an inspiring environment for conducting basic and applied research and innovation in the areas of the integrated use of remote sensing and space-based techniques for monitoring the environment. Environment has been recognized by the Smart Specialization Strategy of Cyprus as the first horizontal priority for future growth of the island. The foreseen upgrade will regard the expansion of this vision to systematic monitoring of the environment using Earth Observation, space and ground based integrated technologies. Such an approach will lead to the systematic monitoring of the the Environment. Five partners have united to upgrade the existing ERC into a CoE, with the common vision to become a world-class innovation, research and education centre, actively contributing to the European Research Area (ERA). More specifically, the Teaming project is a team effort between the Cyprus University of Technology (CUT, acting as the coordinator), the German Aerospace Centre (DLR), the National Observatory of Athens (NOA), the German Leibniz Institute for Tropospheric Research (TROPOS) and the Cyprus Department of Electronic Communications of the Ministry of Transport, Communications and Works (DEC-MTCW)

    EXcellence Research Centre for Earth Surveillance and Space-Based Monitoring of the Environment (EXCELSIOR) for the Eastern Mediterranean Region: the establishment of EO hub for data, products and services

    Get PDF
    The aim of this paper is to present our vision to upgrade the existing ERATOSTHENES Research Centre established within the Cyprus University of Technology into a sustainable, viable and autonomous Centre of Excellence (CoE) for Earth Surveillance and Space-Based Monitoring of the Environment (EXCELSIOR), which will provide the highest quality of related services on the National, European and International levels. One of the goals of 'EXCELSIOR' Teaming Horizon 2020 project is to strategically position the ERATOSTHENES CoE in Cyprus, the eastern Mediterranean and Europe as an efficient knowledge hub in the fields of Earth observation, remote sensing and space technology to provide data, products and services in the above areas. Examples of ERATOSTHENES research centre will further provide Earth observation-based monitoring services and products for natural disasters and environmental applications is shown

    Strategic positioning of the ‘ERATOSTHENES Research Centre’ and exploration of new R&D opportunities in the fields of Earth Surveillance and Space-Based of the Environment

    Get PDF
    The aim of this paper is to present our strategy and vision to upgrade the existing ERATOSTHENES Research Centre (ERC), established within Cyprus University of Technology (CUT), into a sustainable, viable and autonomous Centre of Excellence (CoE) for Earth Surveillance and Space-Based Monitoring of the Environment (EXCELSIOR), which will provide the highest quality of related services both on the National, European and International levels. The ‘EXCELSIOR’ project is a Horizon 2020 Teaming project, addressing the reduction of substantial disparities in the European Union by supporting research and innovation activities and systems in low performing countries. It also aims at establishing long-term and strategic partnerships between the Teaming partners, thus reducing internal research and innovation disparities within European Research and Innovation landscape. The ERCis already an established player in the local community and has excellent active collaboration with actors from various sectors in (a) the government, (b) industry, (c) local organisations, and (d) society. In order to further engage users and citizens and to become more attractive to international research and education community, the Centre aims to be fully involved in strategic positioning on the national level, but also in Europe, the Middle East region and internationally. Some examples of how space technologies are integrated with other tools or techniques such as UAV, field spectroscopy, micro-sensors, EO space/in-situ sensors etc. for the systematic monitoring of the environment is shown. Indeed such examples fulfills the objectives of the COPERNICUS academy network (in which ERC is a member) for empowering the next generation of researchers, scientists, and entrepreneurs with suitable skill sets to use Copernicus data and information services to their full potential. Finally, opportunities for future collaboration and investments with the ERC in the Eastern Mediterranean Region are stated. Five partners have united to upgrade the existing ERC into a CoE, with the common vision to become a world-class innovation, research and education centre, actively contributing to the European Research Area (ERA). More specifically, the Teaming project is a team effort between the Cyprus University of Technology (CUT, acting as the coordinator), the German Aerospace Centre (DLR), the Institute for Astronomy and Astrophysics Space Applications and Remote Sensing of the National Observatory of Athens (NOA), the German Leibniz Institute for Tropospheric Research (TROPOS) and the Cyprus’ Department of Electronic Communications of the Ministry of Transport, Communications and Works (DEC-MTCW)

    The ERATOSTHENES Centre of Excellence (ECoE) as a digital innovation hub for Earth observation

    Get PDF
    The "EXCELSIOR" H2020 Widespread Teaming Phase 2 Project: ERATOSTHENES: EXcellence Research Centre for Earth SurveiLlance and Space-Based MonItoring Of the EnviRonment is supported from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 857510 for a 7 year project period to establish a Centre of Excellence in Cyprus. As well, the Government of the Republic of Cyprus is providing additional resources to support the establishment of the ERATOSTHENES Centre of Excellence (ECoE) in Cyprus. The ECoE seeks to fill the gap by assisting in the spaceborne Earth Observation activities in the Eastern Mediterranean and become a regional key player in the Earth Observation (EO) sector. There are distinct needs and opportunities that motivate the establishment of an Earth Observation Centre of Excellence in Cyprus, which are primarily related to the geostrategic location of the European Union member state of Cyprus to examine complex scientific problems and address user needs in the Eastern Mediterranean, Middle East and Northern Africa (EMMENA), as well as South-East Europe. An important objective of the ECoE is to be a Digital Innovation Hub and a Research Excellence Centre for EO in the EMMENA region, which will establish an ecosystem where state-of-the-art sensing technology, cutting-edge research, targeted education services, and entrepreneurship come together. It is based on the paradigm of Open Innovation 2.0 (OI2.0), which is founded on the Quadruple Helix Model, where Government, Industry, Academia and Society work together to drive change by taking full advantage of the cross-fertilization of ideas. The ECoE as a Digital Innovation Hub (DIH) adopts a two-axis model, where the vertical axis consists of three Thematic Clusters for sustained excellence in research of the ECoE in the domains of Atmosphere and Climate, Resilient Societies and Big Earth Data Management, while the horizontal axis is built around four functional areas, namely: Infrastructure, Research, Education, and Entrepreneurship. The ECoE will focus on five application areas, which include Climate Change Monitoring, Water Resource Management, Disaster Risk Reduction, Access to Energy and Big EO Data Analytics. This structure is expected to leverage the existing regional capacities and advance the excellence by creating new programs and research, thereby establishing the ECoE as a worldclass centre capable of enabling innovation and research competence in Earth Observation, actively participating in Europe, the EMMENA region and the global Earth Observation arena. The partners of the EXCELSIOR consortium include the Cyprus University of Technology as the Coordinator, the German Aerospace Center (DLR), the Leibniz Institute for Tropospheric Research (TROPOS), the National Observatory of Athens (NOA) and the Department of Electronic Communications, Deputy Ministry of Research, Innovation and Digital Policy

    Evaluation of Satellite-Derived Bathymetry from High and Medium-Resolution Sensors Using Empirical Methods

    No full text
    This study evaluates the accuracy of bathymetric maps generated from multispectral satellite datasets acquired from different multispectral sensors, namely the Worldview 2, PlanetScope, and the Sentinel 2, in the bay of Elounda in Crete. Image pre-processing steps were implemented before the use of the three empirical methods for estimating bathymetry. A dedicated correction and median filter have been applied to minimize noise from the sun glint and the sea waves. Due to the spectral complexity of the selected study area, statistical correlation with different numbers of bands was applied. The analysis indicated that blue and green bands obtained the best results with higher accuracy. Then, three empirical models, namely the Single Band Linear Algorithm, the Multiband Linear Algorithm, and the Ratio Transform Algorithm, were applied to the three multispectral images. Bathymetric and error distribution maps were created and used for the error assessment of results. The accuracy of the bathymetric maps estimated from different empirical models is compared with on-site Single beam Echo Sounder measurements. The most accurate bathymetric maps were obtained using the WorldView 2 and the empirical model of the Ratio Transform algorithm, with the RMSE reaching 1.01 m

    Evaluation of Satellite-Derived Bathymetry from High and Medium-Resolution Sensors Using Empirical Methods

    No full text
    This study evaluates the accuracy of bathymetric maps generated from multispectral satellite datasets acquired from different multispectral sensors, namely the Worldview 2, PlanetScope, and the Sentinel 2, in the bay of Elounda in Crete. Image pre-processing steps were implemented before the use of the three empirical methods for estimating bathymetry. A dedicated correction and median filter have been applied to minimize noise from the sun glint and the sea waves. Due to the spectral complexity of the selected study area, statistical correlation with different numbers of bands was applied. The analysis indicated that blue and green bands obtained the best results with higher accuracy. Then, three empirical models, namely the Single Band Linear Algorithm, the Multiband Linear Algorithm, and the Ratio Transform Algorithm, were applied to the three multispectral images. Bathymetric and error distribution maps were created and used for the error assessment of results. The accuracy of the bathymetric maps estimated from different empirical models is compared with on-site Single beam Echo Sounder measurements. The most accurate bathymetric maps were obtained using the WorldView 2 and the empirical model of the Ratio Transform algorithm, with the RMSE reaching 1.01 m
    corecore