15 research outputs found

    Clathrin- and caveolin-1–independent endocytosis: entry of simian virus 40 into cells devoid of caveolae

    Get PDF
    Simian Virus 40 (SV40) has been shown to enter host cells by caveolar endocytosis followed by transport via caveosomes to the endoplasmic reticulum (ER). Using a caveolin-1 (cav-1)–deficient cell line (human hepatoma 7) and embryonic fibroblasts from a cav-1 knockout mouse, we found that in the absence of caveolae, but also in wild-type embryonic fibroblasts, the virus exploits an alternative, cav-1–independent pathway. Internalization was rapid (t1/2 = 20 min) and cholesterol and tyrosine kinase dependent but independent of clathrin, dynamin II, and ARF6. The viruses were internalized in small, tight-fitting vesicles and transported to membrane-bounded, pH-neutral organelles similar to caveosomes but devoid of cav-1 and -2. The viruses were next transferred by microtubule-dependent vesicular transport to the ER, a step that was required for infectivity. Our results revealed the existence of a virus-activated endocytic pathway from the plasma membrane to the ER that involves neither clathrin nor caveolae and that can be activated also in the presence of cav-1

    Methane excess production in oxygen-rich polar water and a model of cellular conditions for this paradox

    Get PDF
    Summer sea ice cover in the Arctic Ocean has undergone a reduction in the last decade exposing the sea surface to unforeseen environmental changes. Melting sea ice increases water stratification and induces nutrient limitation, which is also known to play a crucial role in methane formation in oxygenated surface water. We report on an excess of methane in the marginal ice zone in the western Fram Strait. Our study is based on measurements of oxygen, methane, DMSP, nitrate and phosphate concentrations as well as on phytoplankton composition and light transmission, conducted along the 79°N oceanographic transect from Svalbard to the Northwest Water Polynya region off Greenland. Between the eastern Fram Strait, where Atlantic water enters from the south and the western Fram Strait, where Polar water enters from the north, different nutrient limitations occurred and consequently different bloom conditions were established. Ongoing sea ice melting enhances the environmental differences and initiates regenerated production in the western Fram Strait. In a unique biogeochemical feedback process, methane production occurs despite an oxygen excess. We postulate that DMSP (dimethylsulfoniopropionate) released from sea ice may serve as a precursor for methane formation. Thus, feedback effects on cycling pathways of methane are likely and could constitute an additional component in biogeochemical cycling in a seasonal ice-free Arctic Ocean. The metabolic activity (respiration) of unicellular organisms explains the presence of anaerobic conditions in the cellular environment. Therefore we present a theoretical model which explains the maintenance of anaerobic conditions for methane formation inside bacterial cells, despite enhanced oxygen concentrations in the environment

    Coexisting methane and oxygen excesses in nitrate-limited polar water (Fram Strait) during ongoing sea ice melting

    No full text
    Abstract. Summer sea ice cover in the Arctic Ocean has undergone a reduction in the last decade exposing the sea surface to unforeseen environmental changes. Melting sea ice increases water stratification and induces nutrient limitation, which is also known to play a crucial role in methane formation in oxygenated surface water. We report on a hotspot of methane formation in the marginal ice zone in the western Fram Strait. Our study is based on measurements of oxygen, methane, DMSP, nitrate and phosphate concentrations as well as on phytoplankton composition and light transmission, conducted along the 79° N oceanographic transect. We show that between the eastern Fram Strait, where Atlantic water enters from the south and the western Fram Strait, where Polar water enters from the north, different nutrient limitation occurs and consequently different bloom conditions were established. Ongoing sea ice melting enhances the environmental differences and initiates regenerated production in the western Fram Strait. In a unique biogeochemical feedback process, methane production occurs despite an oxygen excess. We postulate that DMSP (dimethylsulfoniopropionate) released from sea ice may serve as a precursor for methane formation. Thus, feedback effects on cycling pathways of methane are likely, with DMSP catabolism in high latitudes possibly contributing to a warming effect on the earth's climate. This process could constitute an additional component in biogeochemical cycling in a seasonal ice-free Arctic Ocean. The metabolic activity (respiration) of unicellular organisms explains the presence of anaerobic conditions in the cellular environment. Therefore we present a theoretical model which explains the maintenance of anaerobic conditions for methane formation inside bacterial cells, despite enhanced oxygen concentrations in the environment. </jats:p

    Methane measurements during POLARSTERN cruise ARK-XXII/2

    No full text
    A methane surplus relative to the atmospheric equilibrium is a frequently observed feature of ocean surface water. Despite the common fact that biological processes are responsible for its origin, the formation of methane in aerobic surface water is still poorly understood. We report on methane production in the central Arctic Ocean, which was exclusively detected in Pacific derived water but not nearby in Atlantic derived water. The two water masses are distinguished by their different nitrate to phosphate ratios. We show that methane production occurs if nitrate is depleted but phosphate is available as a P source. Apparently the low N:P ratio enhances the ability of bacteria to compete for phosphate while the phytoplankton metabolite dimethylsulfoniopropionate (DMSP) is utilized as a C source. This was verified by experimentally induced methane production in DMSP spiked Arctic sea water. Accordingly we propose that methylated compounds may serve as precursors for methane and thermodynamic calculations show that methylotrophic methanogenesis can provide energy in aerobic environments

    Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter

    Get PDF
    Abstract Sea ice is an important transport vehicle for gaseous, dissolved and particulate matter in the Arctic Ocean. Due to the recently observed acceleration in sea ice drift, it has been assumed that more matter is advected by the Transpolar Drift from shallow shelf waters to the central Arctic Ocean and beyond. However, this study provides first evidence that intensified melt in the marginal zones of the Arctic Ocean interrupts the transarctic conveyor belt and has led to a reduction of the survival rates of sea ice exported from the shallow Siberian shelves (−15% per decade). As a consequence, less and less ice formed in shallow water areas (<30 m) has reached Fram Strait (−17% per decade), and more ice and ice-rafted material is released in the northern Laptev Sea and central Arctic Ocean. Decreasing survival rates of first-year ice are visible all along the Russian shelves, but significant only in the Kara Sea, East Siberian Sea and western Laptev Sea. Identified changes affect biogeochemical fluxes and ecological processes in the central Arctic: A reduced long-range transport of sea ice alters transport and redistribution of climate relevant gases, and increases accumulation of sediments and contaminates in the central Arctic Ocean, with consequences for primary production, and the biodiversity of the Arctic Ocean
    corecore