8 research outputs found

    Assessment of Dry Powder Inhaler Carrier Targeted Design: A Comparative Case Study of Diverse Anomeric Compositions and Physical Properties of Lactose

    No full text
    The pulmonary administration landscape has rapidly advanced in recent years. Targeted design of particles by spray-drying for dry powder inhaler development offers an invaluable tool for engineering of new carriers. In this work, different formulation and process aspects of spray-drying were exploited to produce new lactose carriers. Using an integrated approach, lactose was spray-dried in the presence of polyethylene glycol 200 (PEG 200), and the in vitro performance of the resulting particles was compared with other grades of lactose with varying anomeric compositions and/or physical properties. The anomeric composition of lactose in lactose–PEG 200 feed solutions of variable compositions was analyzed via polarimetry at different temperatures. These results were correlated with the solid-state and anomeric composition of the resulting spray-dried particles using modulated differential scanning calorimetry and wide-angle X-ray scattering. The distinct selected grades of lactose were characterized in terms of their micromeritic properties using laser diffraction, helium pycnometry, and gas adsorption, and their particle surface morphologies were evaluated via scanning electron microscopy. Adhesive mixtures of the different lactose carriers with inhalable-sized salbutamol sulfate, as a model drug, were prepared in low doses and evaluated for their blend homogeneity and aerodynamic performance using a Next Generation Impactor. Characterization of the spray-dried particles revealed that predominantly crystalline (in an anomeric ratio 0.8:1 of α to β) spherical particles with a mean size of 50.9 ± 0.4 μm could be produced. Finally, it was apparent that micromeritic, in particular, the shape, and surface properties (inherent to solid-state and anomeric composition) of carrier particles dominantly control DPI delivery. This provided an insight into the relatively inferior performance of the adhesive blends containing the spherical spray-dried lactose–PEG 200 composites

    Mode of action of PPS in conventional cultures.

    No full text
    <p>Activation of caspases 3 and 7 (A and B) and release of LDH (C and D) upon exposure of EAhy 926 cells to 20 and 200 nm PPS for 4, 8, and 24 hours compared to untreated cells. Data are presented as mean ± SD. (h), hours.</p

    EAhy 926 attached to GEMâ„¢.

    No full text
    <p>Nuclear staining with 5 µg/ml Hoechst 33342 was performed 1, 5, 7, and 14 days after inoculation (A). Vital dye staining for ER and mitochondria five days after inoculation. Hoechst 33342 dye was used as nuclear counterstain (B). Internalized red fluorescent NPs co-localize with the lysosomal dye LysoSensor™ Green DND-189 but not with the nucleus (blue) (C).</p

    Growth curve of EAhy 926 cultured on basal membrane coated GEMâ„¢.

    No full text
    <p>Two pre-installed protocols for cell culturing epithelial (HEK 293) and endothelial (HUVEC) cells were compared. (d), days.</p

    Acute cytotoxicity of NPs exerted on EAhy 926 in different cell cultures after 24 hours.

    No full text
    <p>Cells in conventional cultures were treated with NPs dissolved in serum-free medium (A) as well as in medium with 10% FBS (B). Cells cultured on microcarriers were exposed to NMs dissolved in medium with 10% FBS. Data are presented as mean ± SD.</p

    Crystallographic Textures and Morphologies of Solution Cast Ibuprofen Composite Films at Solid Surfaces

    No full text
    The preparation of thin composite layers has promising advantages in a variety of applications like transdermal, buccal, or sublingual patches. Within this model study the impact of the matrix material on the film forming properties of ibuprofen–matrix composite films is investigated. As matrix materials polystyrene, methyl cellulose, or hydroxyl-ethyl cellulose were used. The film properties were either varied by the preparation route, i.e., spin coating or drop casting, or via changes in the relative ratio of the ibuprofen and the matrix material. The resulting films were investigated via X-ray diffraction and atomic force microscope experiments. The results show that preferred (100) textures can be induced via spin coating with respect to the glass surface, while the drop casting results in a powder-like behavior. The morphologies of the films are strongly impacted by the ibuprofen amount rather than the preparation method. A comparison of the various matrix materials in terms of their impact on the dissolution properties show a two times faster zero order release from methyl cellulose matrix compared to a polystyrene matrix. The slowest rate was observed within the hydroxyl ethyl cellulose as the active pharmaceutical ingredients (APIs) release is limited by diffusion through a swollen matrix. The investigation reveals that the ibuprofen crystallization and film formation is only little effected by the selected matrix material than that compared to the dissolution. A similar experimental approach using other matrix materials may therefore allow to find an optimized composite layer useful for a defined application

    One Polymorph and Various Morphologies of Phenytoin at a Silica Surface Due to Preparation Kinetics

    No full text
    The preparation of solid crystalline films at surfaces is of great interest in a variety of fields. Within this work the preparation of pharmaceutically relevant thin films containing the active pharmaceutical ingredient phenytoin is demonstrated. The preparation techniques applied include drop casting, spin coating, and vacuum deposition. For the solution processed samples a decisive impact of the solution concentration and the applied film fabrication technique is observed; particular films form for all samples but with their extensions along different crystallographic directions strongly altered. Vacuum deposition of phenytoin reveals amorphous films, which over time crystallize into needle-like or particular-type structures whereby a nominal thickness of 50 nm is required to achieve a fully closed layer. Independent of all preparation techniques, the resulting polymorph is the same for each sample as confirmed by specular X-ray diffraction scans. Thus, morphologies observed via optical and atomic force microscope techniques are therefore a result of the preparation technique. This shows that the different time scales for which crystallization is obtained is the driving force for the various morphologies in phenytoin thin films rather than the presence of another polymorph forming

    Development of an Advanced Intestinal in Vitro Triple Culture Permeability Model To Study Transport of Nanoparticles

    No full text
    Intestinal epithelial cell culture models, such as Caco-2 cells, are commonly used to assess absorption of drug molecules and transcytosis of nanoparticles across the intestinal mucosa. However, it is known that mucus strongly impacts nanoparticle mobility and that specialized M cells are involved in particulate uptake. Thus, to get a clear understanding of how nanoparticles interact with the intestinal mucosa, in vitro models are necessary that integrate the main cell types. This work aimed at developing an alternative in vitro permeability model based on a triple culture: Caco-2 cells, mucus-secreting goblet cells and M cells. Therefore, Caco-2 cells and mucus-secreting goblet cells were cocultured on Transwells and Raji B cells were added to stimulate differentiation of M cells. The in vitro triple culture model was characterized regarding confluence, integrity, differentiation/expression of M cells and cell surface architecture. Permeability of model drugs and of 50 and 200 nm polystyrene nanoparticles was studied. Data from the in vitro model were compared with ex vivo permeability results (Ussing chambers and porcine intestine) and correlated well. Nanoparticle uptake was size-dependent and strongly impacted by the mucus layer. Moreover, nanoparticle permeability studies clearly demonstrated that particles were capable of penetrating the intestinal barrier mainly via specialized M cells. It can be concluded that goblet cells and M cells strongly impact nanoparticle uptake in the intestine and should thus be integrated in an in vitro permeability model. The presented model will be an efficient tool to study intestinal transcellular uptake of particulate systems
    corecore