22 research outputs found
Towards breed formation by island model divergence in Korean cattle
BACKGROUND: The main cattle breed in Korea is the brown Hanwoo, which has been under artificial selection within a national breeding program for several decades. Varieties of the Hanwoo known as Jeju Black and Chikso were not included in the breeding program and remained isolated from the effects of recent artificial selection advancements. We analysed the Jeju Black and Chikso populations in regards to their genetic variability, state of inbreeding, as well as level of differentiation from the mainland Hanwoo population. RESULTS: Jeju Black and Chikso were found to have small estimated effective population sizes (N(e)) of only 11 and 7, respectively. Despite a small N(e), higher than expected heterozygosity levels were observed (0.303 and 0.306), however, lower allelic richness was found for the two island populations (1.76 and 1.77) compared to the mainland population (1.81). The increase in heterozygosity could be due to environmental disease challenges that promoted maintenance of higher genetic variability; however, no direct proof exists. Increased heterozygosity due to a first generation crossing of genetically different populations is not recorded. The differentiation between the Korean populations had F(ST) values between 0.014 and 0.036 which is not as high as the differentiation within European beef or dairy cattle breeds (0.047–0.111). This suggests that the three populations have not separated into independent breeds. CONCLUSION: Results agree with an island model of speciation where the brown Hanwoo represents the ancestral breed, whilst the Jeju Black and Chikso diverge from this common ancestor, following different evolutionary trajectories. Nevertheless, differences are minor and whether Jeju Black and Chikso cattle will develop into discrete breeds or reintegrate with the main population has to be seen in the future and will largely depend on human management decisions. This offers a rare opportunity to accompany the development of new breeds but also poses challenges on how to preserve these incipient breeds and ensure their long term viability. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-015-0563-2) contains supplementary material, which is available to authorized users
Effect of the myostatin locus on muscle mass and intramuscular fat content in a cross between mouse lines selected for hypermuscularity
Abstract Background This study is aimed at the analysis of genetic and physiological effects of myostatin on economically relevant meat quality traits in a genetic background of high muscularity. For this purpose, we generated G3 populations of reciprocal crosses between the two hypermuscular mouse lines BMMI866, which carries a myostatin mutation and is lean, and BMMI806, which has high intramuscular and body fat content. To assess the relationship between muscle mass, body composition and muscle quality traits, we also analysed intramuscular fat content (IMF), water holding capacity (WHC), and additional physiological parameters in M. quadriceps and M. longissimus in 308 G3-animals. Results We found that individuals with larger muscles have significantly lower total body fat (r = −0.28) and IMF (r = −0.64), and in females, a lower WHC (r = −0.35). In males, higher muscle mass was also significantly correlated with higher glycogen contents (r = 0.2) and lower carcass pH-values 24 hours after dissection (r = −0.19). Linkage analyses confirmed the influence of the myostatin mutation on higher lean mass (1.35 g), reduced body fat content (−1.15%), and lower IMF in M. longissimus (−0.13%) and M. quadriceps (−0.07%). No effect was found for WHC. A large proportion of variation of intramuscular fat content of the M. longissimus at the myostatin locus could be explained by sex (23%) and direction-of-cross effects (26%). The effects were higher in males (+0.41%). An additional locus with negative over-dominance effects on total fat mass (−0.55 g) was identified on chromosome 16 at 94 Mb (86–94 Mb) which concurs with fat related QTL in syntenic regions on SSC13 in pigs and BTA1 in cattle. Conclusion The data shows QTL effects on mouse muscle that are similar to those previously observed in livestock, supporting the mouse model. New information from the mouse model helps to describe variation in meat quantity and quality, and thus contribute to research in livestock
Genetic diversity and effective population sizes of thirteen Indian cattle breeds
Background: The genetic structure of a diverse set of 15 Indian indigenous breeds and non-descript indigenous cattle sampled from eight states was examined, based on 777 k single nucleotide polymorphism (SNP) genotypes obtained on 699 animals, with sample sizes ranging from 17 to 140 animals per breed. To date, this is the largest and most detailed assessment of the genetic diversity of Indian cattle breeds. Results: Admixture analyses revealed that 109 of the indigenous animals analyzed had more than 1% Bos taurus admixture of relatively recent origin. Pure indigenous animals were defined as having more than 99% Bos indicus ancestry. Assessment of the genetic diversity within and between breeds using principal component analyses, F statistics, runs of homozygosity, the genomic relationship matrix, and maximum likelihood clustering based on allele frequencies revealed a low level of genetic diversity among the indigenous breeds compared to that of Bos taurus breeds. Correlations of SNP allele frequencies between breeds indicated that the genetic variation among the Bos indicus breeds was remarkably low. In addition, the variance in allele frequencies represented less than 1.5% between the Indian indigenous breeds compared to about 40% between Bos taurus dairy breeds. Effective population sizes (Ne) increased during a period post-domestication, notably for Ongole cattle, and then declined during the last 100 generations. Although we found that most of the identified runs of homozygosity are short in the Indian indigenous breeds, indicating no recent inbreeding, the high FROH coefficients and low FIS values point towards small population sizes. Nonetheless, the Ne of the Indian indigenous breeds is currently still larger than that of Bos taurus dairy breeds. Conclusions: The changes in the estimates of effective population size are consistent with domestication from a large native population followed by consolidation into breeds with a more limited population size. The surprisingly low genetic diversity among Indian indigenous cattle breeds might be due to their large Ne since their domestication, which started to decline only 100 generations ago, compared to approximately 250 to 500 generations for Bos taurus dairy cattle
Effect of the myostatin locus on muscle mass and intramuscular fat content in a cross between mouse lines selected for hypermuscularity
Abstract Background This study is aimed at the analysis of genetic and physiological effects of myostatin on economically relevant meat quality traits in a genetic background of high muscularity. For this purpose, we generated G3 populations of reciprocal crosses between the two hypermuscular mouse lines BMMI866, which carries a myostatin mutation and is lean, and BMMI806, which has high intramuscular and body fat content. To assess the relationship between muscle mass, body composition and muscle quality traits, we also analysed intramuscular fat content (IMF), water holding capacity (WHC), and additional physiological parameters in M. quadriceps and M. longissimus in 308 G3-animals. Results We found that individuals with larger muscles have significantly lower total body fat (r = −0.28) and IMF (r = −0.64), and in females, a lower WHC (r = −0.35). In males, higher muscle mass was also significantly correlated with higher glycogen contents (r = 0.2) and lower carcass pH-values 24 hours after dissection (r = −0.19). Linkage analyses confirmed the influence of the myostatin mutation on higher lean mass (1.35 g), reduced body fat content (−1.15%), and lower IMF in M. longissimus (−0.13%) and M. quadriceps (−0.07%). No effect was found for WHC. A large proportion of variation of intramuscular fat content of the M. longissimus at the myostatin locus could be explained by sex (23%) and direction-of-cross effects (26%). The effects were higher in males (+0.41%). An additional locus with negative over-dominance effects on total fat mass (−0.55 g) was identified on chromosome 16 at 94 Mb (86–94 Mb) which concurs with fat related QTL in syntenic regions on SSC13 in pigs and BTA1 in cattle. Conclusion The data shows QTL effects on mouse muscle that are similar to those previously observed in livestock, supporting the mouse model. New information from the mouse model helps to describe variation in meat quantity and quality, and thus contribute to research in livestock
Genomic evaluation of milk yield in a smallholder crossbred dairy production system in India
Background: India is the largest milk producer globally, with the largest proportion of cattle milk production coming from smallholder farms with an average herd size of less than two milking cows. These cows are mainly undefined multi-generation crosses between exotic dairy breeds and indigenous Indian cattle, with no performance or pedigree recording. Therefore, implementing genetic improvement based on genetic evaluation has not yet been possible. We present the first results from a large smallholder performance recording program in India, using single nucleotide polymorphism (SNP) genotypes to estimate genetic parameters for monthly test-day (TD) milk records and to obtain and validate genomic estimated breeding values (GEBV).Results: The average TD milk yield under the high, medium, and low production environments were 9.64, 6.88, and 4.61 kg, respectively. In the high production environment, the usual profile of a lactation curve was evident, whereas it was less evident in low and medium production environments. There was a clear trend of an increasing milk yield with an increasing Holstein Friesian (HF) proportion in the high production environment, but no increase above intermediate grades in the medium and low production environments. Trends for Jersey were small but yield estimates had a higher standard error than HF. Heritability estimates for TD yield across the lactation ranged from 0.193 to 0.250, with an average of 0.230. The additive genetic correlations between TD yield at different times in lactation were high, ranging from 0.846 to 0.998. The accuracy of phenotypic validation of GEBV from the method that is believed to be
the least biased was 0.420, which was very similar to the accuracy obtained from the average prediction error variance of the GEBV.Conclusions: The results indicate strong potential for genomic selection to improve milk production of smallholder crossbred cows in India. The performance of cows with different breed compositions can be determined in different Indian environments, which makes it possible to provide better advice to smallholder farmers on optimum breed composition for their environment
Go with the flow—biology and genetics of the lactation cycle
Lactation is a dynamic process, which evolved to meet dietary demands of growing offspring. At the same time, the mother's metabolism changes to meet the high requirements of nutrient supply to the offspring. Through strong artificial selection, the strain of milk production on dairy cows is often associated with impaired health and fertility. This led to the incorporation of functional traits into breeding aims to counteract this negative association. Potentially, distributing the total quantity of milk per lactation cycle more equally over time could reduce the peak of physiological strain and improve health and fertility. During lactation many factors affect the production of milk: food intake; digestion, absorption, and transportation of nutrients; blood glucose levels; activity of cells in the mammary gland, liver, and adipose tissue; synthesis of proteins and fat in the secretory cells; and the metabolic and regulatory pathways that provide fatty acids, amino acids, and carbohydrates. Whilst the endocrine regulation and physiology of the dynamic process of milk production seems to be understood, the genetics that underlie these dynamics are still to be uncovered. Modeling of longitudinal traits and estimating the change in additive genetic variation over time has shown that the genetic contribution to the expression of a trait depends on the considered time-point. Such time-dependent studies could contribute to the discovery of missing heritability. Only very few studies have estimated exact gene and marker effects at different time-points during lactation. The most prominent gene affecting milk yield and milk fat, DGAT1, exhibits its main effects after peak production, whilst the casein genes have larger effects in early lactation. Understanding the physiological dynamics and elucidating the time-dependent genetic effects behind dynamically expressed traits will contribute to selection decisions to further improve productive and healthy breeding populations.Peer Reviewe
Small SNP panels for breed proportion estimation in Indian crossbred dairy cattle
Reliably identifying breed proportions in crossbred cattle in smallholder farms is a crucial step to improve mating decisions and optimizing management in these systems. High-density genotype information is able to estimate higher-order breed proportions accurately, but, are too expensive for mass application in smallholder systems. We used high-density genotype information (777 k SNPs) of 623 crossbred cattle from India that had Holstein-Friesian (HFX) and/or Jersey and indigenous breeds in their ancestry to select a smaller number of SNPs for breed proportion estimation. The accuracy of estimates obtained from panels with 100-500 SNP was compared to estimates based on all SNPs. Panels were selected for highest absolute allele frequency difference between exotic dairy versus indigenous Bos indicus, or between HFX versus Jersey breeds. A step-wise pruning approach was developed showing that and increased physical distances between markers of 8.5 Mb improved breed proportion estimation compared to a standard 1 Mb distance. A panel of 500 SNPs optimized to estimate HFX versus Jersey versus indicine ancestry was able to estimate indicine breed proportions with r2 = .991, HFX proportions with r2 = .979 and Jersey proportions with r2 = .949. The number of markers was a deciding factor in estimation accuracy, together with the distribution of markers across the genome
Genomewide study and validation of markers associated with production traits in German Landrace boars1
We present results from a genomewide association study (GWAS) and a single-marker association study. The GWAS was performed with the Illumina PorcineSNP60 BeadChip from which 5 markers were selected for a validation analysis. Genetic effects were estimated for feed intake, weight gain, and traits of fat and muscle tissue in German Landrace boars kept on performance test stations. The GWAS was performed in a population of 288 boars and the validation study for another 432 boars. No statistically significant effect was found in the GWAS after adjusting for multiple testing. Effects of 2 markers, which were significant genomewide before correction for multiple testing (