9 research outputs found

    Self-Drying: A Gecko\u27s Innate Ability to Remove Water from Wet Toe Pads

    No full text
    When the adhesive toe pads of geckos become wet, they become ineffective in enabling geckos to stick to substrates. This result is puzzling given that many species of gecko are endemic to tropical environments where water covered surfaces are ubiquitous. We hypothesized that geckos can recover adhesive capabilities following exposure of their toe pads to water by walking on a dry surface, similar to the active self-cleaning of dirt particles. We measured the time it took to recover maximum shear adhesion after toe pads had become wet in two groups, those that were allowed to actively walk and those that were not. Keeping in mind the importance of substrate wettability to adhesion on wet surfaces, we also tested geckos on hydrophilic glass and an intermediately wetting substrate (polymethylmethacrylate; PMMA). We found that time to maximum shear adhesion recovery did not differ in the walking groups based on substrate wettability (22.7±5.1 min on glass and 15.4±0.3 min on PMMA) but did have a significant effect in the non-walking groups (54.3±3.9 min on glass and 27.8±2.5 min on PMMA). Overall, we found that by actively walking, geckos were able to self-dry their wet toe pads and regain maximum shear adhesion significantly faster than those that did not walk. Our results highlight a unexpected property of the gecko adhesive system, the ability to actively self-dry and recover adhesive performance after being rendered dysfunctional by water

    The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads

    No full text
    An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70–90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties

    Repeated measures MANOVA shows a significant difference in time to regain maximum shear adhesion based on substrate (glass or PMMA), treatment (stepping or no stepping) and their interaction.

    No full text
    <p>Repeated measures MANOVA shows a significant difference in time to regain maximum shear adhesion based on substrate (glass or PMMA), treatment (stepping or no stepping) and their interaction.</p

    Schematic of the work of adhesion model geometry.

    No full text
    <p>Schematic depicts a patterned gecko surface (pattern of four setae represented as yellow pillars) filled with water (blue) both prior to and during contact with the substrate (either glass or PMMA) in air (white space).</p

    Schematic of the self-drying model.

    No full text
    <p>Schematic depicts a patterned gecko surface (pattern of four setae represented as yellow pillars) filled with water (blue) nearly contacting a substrate (glass or PMMA). Using the tree frog adhesive system as a model, we describe the inter-setal distance or microchannel width as W and the height of the intervening water layer as h. During a step, where the gecko setae approach the substrate, h→0 and W>h (purple arrow), causing water to move out of the microchannels (small purple arrows). When the gecko removes the foot, using digital hyperextension, h increases and at h>W (red arrow), remaining water is moved back into the microchannels (small red arrows). The movement of water in and out of the microchannels is due to the pressure difference in the microchannels and thin water film.</p

    Wet and dry Tokay gecko (<i>Gekko gecko</i>) toe pads.

    No full text
    <p>(A) Dry foot in contact with a glass substrate where the setal mats appear white in color and (B) a wet foot in contact with a glass substrate where the setal mats appear grey in color. When wet the toe pads are no longer superhydrophobic and water droplets fall into the setal mat, completely wetting it.</p

    Tokay gecko (<i>Gekko gecko</i>) active and passive toe pad drying patterns.

    No full text
    <p>Appearance of toe pads at 15-soak in non-stepping (A) and stepping (B) groups. Areas that are grey in color are wet and areas that are white in color are dry. Without stepping toes heterogeneously dry, where some toes are wet and others show an irregular evaporation line (A). Conversely, when allowed to actively step toes dry in a more homogenous fashion, where the outside of the toe dries first, leaving a wet patch (grey in color) in the center of each of the toes (B).</p

    Time to maximum shear adhesion and total number of steps taken by Tokay geckos (<i>Gekko gecko</i>) with wet toe pads.

    No full text
    <p>Time to maximum shear adhesion (min) and total number of steps until maximum shear adhesion was reached for each treatment group (GNS  =  Glass non-stepping, GS  =  Glass stepping, PNS  =  PMMA non-stepping and PS  =  PMMA stepping). Bars with the same letter are statistically indistinguishable. Error is reported as mean ±1 s.e.m. The “*” represents the approximated time to maximum shear adhesion (min) in the GNS treatment group.</p

    Self-Drying: A Gecko's Innate Ability to Remove Water from Wet Toe Pads

    No full text
    When the adhesive toe pads of geckos become wet, they become ineffective in enabling geckos to stick to substrates. This result is puzzling given that many species of gecko are endemic to tropical environments where water covered surfaces are ubiquitous. We hypothesized that geckos can recover adhesive capabilities following exposure of their toe pads to water by walking on a dry surface, similar to the active self-cleaning of dirt particles. We measured the time it took to recover maximum shear adhesion after toe pads had become wet in two groups, those that were allowed to actively walk and those that were not. Keeping in mind the importance of substrate wettability to adhesion on wet surfaces, we also tested geckos on hydrophilic glass and an intermediately wetting substrate (polymethylmethacrylate; PMMA). We found that time to maximum shear adhesion recovery did not differ in the walking groups based on substrate wettability (22.7±5.1 min on glass and 15.4±0.3 min on PMMA) but did have a significant effect in the non-walking groups (54.3±3.9 min on glass and 27.8±2.5 min on PMMA). Overall, we found that by actively walking, geckos were able to self-dry their wet toe pads and regain maximum shear adhesion significantly faster than those that did not walk. Our results highlight a unexpected property of the gecko adhesive system, the ability to actively self-dry and recover adhesive performance after being rendered dysfunctional by water
    corecore