46 research outputs found

    Kinetic modelling of runaway electron generation in argon-induced disruptions in ASDEX Upgrade

    Get PDF
    Massive material injection has been proposed as a way to mitigate the formation of a beam of relativistic runaway electrons that may result from a disruption in tokamak plasmas. In this paper we analyse runaway generation observed in eleven ASDEX Upgrade discharges where disruption was triggered using massive gas injection. We present numerical simulations in scenarios characteristic of on-axis plasma conditions, constrained by experimental observations, using a description of the runaway dynamics with self-consistent electric field and temperature evolution in two-dimensional momentum space and zero-dimensional real space. We describe the evolution of the electron distribution function during the disruption, and show that the runaway seed generation is dominated by hot-tail in all of the simulated discharges. We reproduce the observed dependence of the current dissipation rate on the amount of injected argon during the runaway plateau phase. Our simulations also indicate that above a threshold amount of injected argon, the current density after the current quench depends strongly on the argon densities. This trend is not observed in the experiments, which suggests that effects not captured by 0D kinetic modeling -- such as runaway seed transport -- are also important.Comment: 17 pages, 15 figures, published in Journal of Plasma Physics (Invited Contributions from the 18th European Fusion Theory Conference

    Probing non-linear MHD stability of the EDA H-mode in ASDEX Upgrade

    Full text link
    Regimes of operation in tokamaks that are devoid of large ELMs have to be better understood to extrapolate their applicability to reactor-relevant devices. This paper describes non-linear extended MHD simulations that use an experimental equilibrium from an EDA H-mode in ASDEX Upgrade. Linear ideal MHD analysis indicates that the operational point lies slightly inside of the stable region. The non-linear simulations with the visco-resistive extended MHD code, JOREK, sustain non-axisymmetric perturbations that are linearly most unstable with toroidal mode numbers of n = \{6 \dots 9\}, but non-linearly higher and lower n become driven and the low-n become dominant. The poloidal mode velocity during the linear phase is found to correspond to the expected velocity for resistive ballooning modes. The perturbations that exist in the simulations have somewhat smaller poloidal wavenumbers (k_{\theta} \sim 0.1 to 0.5 cm^{-1} ) than the experimental expectations for the quasi-coherent mode in EDA, and cause non-negligible transport in both the heat and particle channels. In the transition from linear to non-linear phase, the mode frequency chirps down from approximately 35 kHz to 13 kHz, which corresponds approximately to the lower end of frequencies that are typically observed in EDA H-modes in ASDEX Upgrade
    corecore