11 research outputs found

    A Systems Genetics Approach Implicates USF1, FADS3, and Other Causal Candidate Genes for Familial Combined Hyperlipidemia

    Get PDF
    We hypothesized that a common SNP in the 3' untranslated region of the upstream transcription factor 1 (USF1), rs3737787, may affect lipid traits by influencing gene expression levels, and we investigated this possibility utilizing the Mexican population, which has a high predisposition to dyslipidemia. We first associated rs3737787 genotypes in Mexican Familial Combined Hyperlipidemia (FCHL) case/control fat biopsies, with global expression patterns. To identify sets of co-expressed genes co-regulated by similar factors such as transcription factors, genetic variants, or environmental effects, we utilized weighted gene co-expression network analysis (WGCNA). Through WGCNA in the Mexican FCHL fat biopsies we identified two significant Triglyceride (TG)-associated co-expression modules. One of these modules was also associated with FCHL, the other FCHL component traits, and rs3737787 genotypes. This USF1-regulated FCHL-associated (URFA) module was enriched for genes involved in lipid metabolic processes. Using systems genetics procedures we identified 18 causal candidate genes in the URFA module. The FCHL causal candidate gene fatty acid desaturase 3 (FADS3) was associated with TGs in a recent Caucasian genome-wide significant association study and we replicated this association in Mexican FCHL families. Based on a USF1-regulated FCHL-associated co-expression module and SNP rs3737787, we identify a set of causal candidate genes for FCHL-related traits. We then provide evidence from two independent datasets supporting FADS3 as a causal gene for FCHL and elevated TGs in Mexicans

    Preadipocytes of type 2 diabetes subjects display an intrinsic gene expression profile of decreased differentiation capacity

    No full text
    Insulin resistance and type 2 diabetes mellitus (T2DM) are associated with increased adipocyte size, altered secretory pattern and decreased differentiation of preadipocytes. In this study, we identified the underlying molecular processes in preadipocytes of T2DM patients, a characteristic for the development of T2DM. Preadipocyte cell cultures were prepared from subcutaneous fat biopsies of seven T2DM patients (age 53 ± 12 years; body mass index (BMI) 34 ± 5  kg m(-2)) and nine control subjects (age 51 ± 12 years; BMI 30 ± 3 kg m(-2)). Microarray analysis was used to identify altered processes between the T2DM and control preadipocytes. Gene expression profiling showed changed expression of transcription regulators involved in adipogenesis and in extracellular matrix remodeling, actin cytoskeleton and integrin signaling genes, which indicated decreased capacity to differentiate. Additionally, genes involved in insulin signaling and lipid metabolism were downregulated, and inflammation/apoptosis was upregulated in T2DM preadipocytes. Decreased expression of genes involved in differentiation can provide a molecular basis for the reduced adipogenesis of preadipocytes of T2DM subjects, leading to reduced formation of adipocytes in subcutaneous fat depots, and ultimately leading to ectopic fat storag

    Optimizing Management of Heart Failure by Using Echo and Natriuretic Peptides in the Outpatient Unit

    No full text
    Chronic heart failure (HF) is an important public health problem and is associated with high morbidity, high mortality, and considerable healthcare costs. More than 90% of hospitalizations due to worsening HF result from elevations of left ventricular (LV) filling pressures and fluid overload, which are often accompanied by the increased synthesis and secretion of natriuretic peptides (NPs). Furthermore, persistently abnormal LV filling pressures and a rise in NP circulating levels are well known indicators of poor prognosis. Frequent office visits with the resulting evaluation and management are most often needed. The growing pressure from hospital readmissions in HF patients is shifting the focus of interest from traditionally symptom-guided care to a more specific patient-centered follow-up care based on clinical findings, BNP and echo. Recent studies supported the value of serial NP measurements and Doppler echocardiographic biomarkers of elevated LV filling pressures as tools to scrutinize patients with impending clinically overt HF. Therefore, combination of echo and pulsed-wave blood-flow and tissue Doppler with NPs appears valuable in guiding ambulatory HF management, since they are potentially useful to distinguish stable patients from those at high risk of decompensation

    The genetics of familial combined hyperlipidaemia.

    No full text
    Item does not contain fulltextAlmost 40 years after the first description of familial combined hyperlipidaemia (FCHL) as a discrete entity, the genetic and metabolic basis of this prevalent disease has yet to be fully unveiled. In general, two strategies have been applied to elucidate its complex genetic background, the candidate-gene and the linkage approach, which have yielded an extensive list of genes associated with FCHL or its related traits, with a variable degree of scientific evidence. Some genes influence the FCHL phenotype in many pedigrees, whereas others are responsible for the affected state in only one kindred, thereby adding to the genetic and phenotypic heterogeneity of FCHL. This Review outlines the individual genes that have been described in FCHL and how these genes can be incorporated into the current concept of metabolic pathways resulting in FCHL: adipose tissue dysfunction, hepatic fat accumulation and overproduction, disturbed metabolism and delayed clearance of apolipoprotein-B-containing particles. Genes that affect metabolism and clearance of plasma lipoprotein particles have been most thoroughly studied. The adoption of new traits, in addition to the classic plasma lipid traits, could aid in the identification of new genes implicated in other pathways in FCHL. Moreover, systems genetic analysis, which integrates genetic polymorphisms with data on gene expression levels, lipidomics or metabolomics, will attribute functions to genetic variants in addition to revealing new genes.1 juni 201
    corecore