211 research outputs found
Dirac gaugino as leptophilic dark matter
We investigate the leptophilic properties of Dirac gauginos in an
R--symmetric N=2 supersymmetric model with extended gauge and Higgs sectors.
The annihilation of Dirac gauginos to leptons requires no chirality flip in the
final states so that it is not suppressed as in the Majorana case. This implies
that it can be sizable enough to explain the positron excess observed by the
PAMELA experiment with moderate or no boost factors. When squark masses are
heavy, the annihilation of Dirac gauginos to hadrons is controlled by their
Higgsino fraction and is driven by the and final states.
Moreover, at variance with the Majorana case, Dirac gauginos with a
non-vanishing higgsino fraction can also have a vector coupling with the
gauge boson leading to a sizable spin--independent scattering cross section off
nuclei. Saturating the current antiproton limit, we show that Dirac gauginos
can leave a signal in direct detection experiments at the level of the
sensitivity of dark matter searches at present and in the near future.Comment: 24 pages, 10 figures, typos corrected, final version published on
JCA
Atmospheric and Solar Neutrino Masses from Horizontal U(1) Symmetry
We study the neutrino mass matrix in supersymmetric models in which the quark
and charged lepton mass hierarchies and also the suppression of baryon or
lepton number violating couplings are all explained by horizontal
symmetry. It is found that the neutrino masses and mixing angles suggested by
recent atmospheric and solar neutrino experiments arise naturally in this
framework which fits in best with gauge-mediated supersymmetry breaking with
large . This framework highly favors the small angle MSW oscillation
of solar neutrinos, and determine the order of magnitudes of all the neutrino
mixing angles and mass hierarchies.Comment: No figures. 14 pages, revte
Dark matter and sub-GeV hidden U(1) in GMSB models
Motivated by the recent PAMELA and ATIC data, one is led to a scenario with
heavy vector-like dark matter in association with a hidden sector
below GeV scale. Realizing this idea in the context of gauge mediated
supersymmetry breaking (GMSB), a heavy scalar component charged under
is found to be a good dark matter candidate which can be searched for direct
scattering mediated by the Higgs boson and/or by the hidden gauge boson. The
latter turns out to put a stringent bound on the kinetic mixing parameter
between and : . For the typical range
of model parameters, we find that the decay rates of the ordinary lightest
neutralino into hidden gauge boson/gaugino and photon/gravitino are comparable,
and the former decay mode leaves displaced vertices of lepton pairs and missing
energy with distinctive length scale larger than 20 cm for invariant lepton
pair mass below 0.5 GeV. An unsatisfactory aspect of our model is that the
Sommerfeld effect cannot raise the galactic dark matter annihilation by more
than 60 times for the dark matter mass below TeV.Comment: 1+15 pages, 4 figures, version published in JCAP, references added,
minor change
Baryogenesis and Degenerate Neutrinos
We bring the theoretical issue of whether two important cosmological demands,
baryon asymmetry and degenerate neutrinos as hot dark matter, can be compatible
in the context of the seesaw mechanism. To realize leptogenesis with almost
degenerate Majorana neutrinos without severe fine-tuning of parameters, we
propose the hybrid seesaw mechanism with a heavy Higgs triplet and right-handed
neutrinos. Constructing a minimal hybrid seesaw model with SO(3) flavor
symmetry for the neutrino sector, we show that the mass splittings for the
atmospheric and solar neutrino oscillations which are consistent with the
requirements for leptogenesis can naturally arise.Comment: 13 pages with one figure using axodraw.st
The problem, and B and L Conservation with a Discrete Gauge R Symmetry
We examine in a generic context how the problem can be resolved by
means of a spontaneously broken gauge symmetry. We then focus on the new scheme
based on a discrete gauge R symmetry which is spontaneously broken by
nonperturbative hidden sector dynamics triggering supersymmetry breaking also.
The possibility to suppress the dangerous baryon and/or lepton number violating
interactions by means of this discrete R symmetry is examined also together
with some phenomenological consequences.Comment: 13 pages, RevTex, no figure
Summary of the Activities of the Working Group I on High Energy and Collider Physics
This is a summary of the projects undertaken by the Working Group I on High
Energy Collider Physics at the Eighth Workshop on High Energy Physics
Phenomenology (WHEPP8) held at the Indian Institute of Technology, Mumbai,
January 5-16, 2004. The topics covered are (i) Higgs searches (ii)
supersymmetry searches (iii) extra dimensions and (iv) linear collider.Comment: summary of Working Group I at the Eighth Workshop on High Energy
Physics Phenomenology (WHEPP8), I.I.T., Mumbai, January 5-16, 200
Fermion Electric Dipole Moments in Supersymmetric Models with R-parity Violation
We analyze the electron and neutron electric dipole moments induced by
R-parity violating interactions in supersymmetric models. It is pointed out
that dominant contributions can come from one-loop diagrams involving both the
bilinear and trilinear R-parity odd couplings, leading to somewhat severe
constraints on the products of those couplings.Comment: Revtex, 19pp, four figures in axodraw.st
Gauge Unification and Dynamical Supersymmetry Breaking
Under the assumption that all the gauge groups in supersymmetric theories
unify at the fundamental scale, the numbers and the mass scales of messenger
quarks and leptons, as well as the beta-function coefficient of the sector for
dynamical supersymmetry breaking are constrained depending on various gauge
mediation mechanisms. For this, we use one-loop renormalization group equations
and draw constraints on the scales in each gauge mediation model.Comment: 13 pages, Latex. Improved significantly, reference expended,
disagreement with Dubovsky, et.al. [hep-ph/9707357] clarifie
Bridging flavour violation and leptogenesis in SU(3) family models
We reconsider basic, in the sense of minimal field content, Pati-Salam x
SU(3) family models which make use of the Type I see-saw mechanism to reproduce
the observed mixing and mass spectrum in the neutrino sector. The goal of this
is to achieve the observed baryon asymmetry through the thermal decay of the
lightest right-handed neutrino and at the same time to be consistent with the
expected experimental lepton flavour violation sensitivity. This kind of models
have been previously considered but it was not possible to achieve a
compatibility among all of the ingredients mentioned above. We describe then
how different SU(3) messengers, the heavy fields that decouple and produce the
right form of the Yukawa couplings together with the scalars breaking the SU(3)
symmetry, can lead to different Yukawa couplings. This in turn implies
different consequences for flavour violation couplings and conditions for
realizing the right amount of baryon asymmetry through the decay of the
lightest right-handed neutrino. Also a highlight of the present work is a new
fit of the Yukawa textures traditionally embedded in SU(3) family models.Comment: 26 pages, 5 figures, Some typos correcte
The abundance of relativistic axions in a flaton model of Peccei-Quinn symmetry
Flaton models of Peccei-Quinn symmetry have good particle physics motivation,
and are likely to cause thermal inflation leading to a well-defined cosmology.
They can solve the problem, and generate viable neutrino masses.
Canonical flaton models predict an axion decay constant F_a of order 10^{10}
GeV and generic flaton models give F_a of order 10^9 GeV as required by
observation. The axion is a good candidate for cold dark matter in all cases,
because its density is diluted by flaton decay if F_a is bigger than 10^{12}
GeV. In addition to the dark matter axions, a population of relativistic axions
is produced by flaton decay, which at nucleosynthesis is equivalent to some
number \delta N_\nu of extra neutrino species. Focussing on the canonical
model, containing three flaton particles and two flatinos, we evaluate all of
the flaton-flatino-axion interactions and the corresponding axionic decay
rates. They are compared with the dominant hadronic decay rates, for both DFSZ
and KSVZ models. These formulas provide the basis for a precise calculation of
the equivalent \delta N_\nu in terms of the parameters (masses and couplings).
The KSVZ case is probably already ruled out by the existing bound \delta
N_\nu\lsim 1. The DFSZ case is allowed in a significant region of parameter
space, and will provide a possible explanation for any future detection of
nonzero
- …