4,851 research outputs found

    Angelica keiskei, an emerging medicinal herb with various bioactive constituents and biological activities.

    Get PDF
    Angelica keiskei (Miq.) Koidz. (Umbelliferae) has traditionally been used to treat dysuria, dyschezia, and dysgalactia as well as to restore vitality. Recently, the aerial parts of A. keiskei have been consumed as a health food. Various flavonoids, coumarins, phenolics, acetylenes, sesquiterpene, diterpene, and triterpenes were identified as the constituents of A. keiskei. The crude extracts and pure constituents were proven to inhibit tumor growth and ameliorate inflammation, obesity, diabetics, hypertension, and ulcer. The extract also showed anti-thrombotic, anti-oxidative, anti-hyperlipidemic, anti-viral, and anti-bacterial activities. This valuable herb needs to be further studied and developed not only to treat these human diseases but also to improve human health. Currently A. keiskei is commercialized as a health food and additives in health drinks. This article presents a comprehensive review of A. keiskei and its potential place in the improvement of human health

    New observations with CREAM

    Get PDF

    Computational Approaches to Localized Deformation Within the Lithosphere and for Crust-Mantle Interactions

    Get PDF
    The thesis addresses selected problems related to localized deformation of the solid Earth’s lithosphere that stem from non-uniform strengths or emerge from non-linear rheologies. A new code has been developed to model the spontaneous localization through strain-weakening plasticity. A code coupling technique is introduced as an attempt to efficiently solve multi-material and multi-physics problems like crust-mantle interactions. We first address a problem of localized deformation that is caused by pre-existing heterogeneities. Specifically, the effects of laterally varying viscous strength on the Cenozoic extension of the northern Basin and Range are investigated using numerical models. Three-dimensional viscous flow models with imposed plate motions and localized zones of low viscosity show that strain rates are concentrated in weak zones with adjacent blocks experiencing little deformation. This result can explain the geodetically discovered concentrated strain in the eastern part of the northern Basin and Range as the high strains are a response to far field plate motions within a locally less viscous mantle. The low viscosity of mantle is consistent with the low seismic velocities in the region. As an instance of spontaneously emergent localized deformations, brittle deformations in oceanic lithosphere are investigated next. We developed a Lagrangian finite difference code, SNAC, to investigate this class of problems. Brittle deformations are modeled as localized plastic strain. The detailed algorithm of SNAC is presented in Appendix A. The spacing of fracture zones in oceanic lithosphere is numerically explored. Numerical models represent a ridge-parallel cross-section of young oceanic lithosphere. An elasto-visco-plastic rheology can induce brittle deformation or creep according to the local temperature. The spacing of localized plastic zones, corresponding to fracture zones, decreases as crustal thickness increases. The stronger creep strength raises the threshold value of crustal thickness: If the crust is thinner than the threshold, the brittle deformation can evolve into primary cracks. Plastic flow rules are parametrized by the dilation angle. If the dilatational deformation is allowed in the plastic flow rules (dilation angle>0°), the primary cracks tend to be vertical; otherwise, a pair of primary cracks form a graben. The modeling results are compatible with the correlation between crustal thickness and the spacing of fracture zones found in different regions such as the Reykjanes ridge and the Australian Antarctic Discordance. Three-dimensional (3D) numerical models are used to find the mechanics responsible for the various patterns made by the segments of the mid-ocean ridges and the structures connecting them. The models are initially loaded with thermal stresses due to the cooling of oceanic lithosphere and prescribed plate motions. The two driving forces are comparable in magnitude and the thermal stresses can exert ridge-parallel forces when selectively released by ridges and ridge-parallel structure. Represented by localized plastic strain, ridge segments interact in two different modes as they propagate towards each other: An overlapping mode where ridge segments overlap and bend toward each other and a connecting mode where two ridge segments are connected by a transform-like fault. As the ratio of thermal stress to spreading-induced stress (γ) increases, the patterns of localized plastic strain change from the overlapping to connecting mode. Rate effects are taken into account by the spreading rate normalized by a reference-cooling rate (Pe′) and the ratio of thermal stress to the reference spreading-induced stresses (γ′). The stability fields of the two modes are unambiguously defined by Pe′ paired with γ'. Crust and mantle are distinct in terms of composition and rheology. To study the combined response of crust and mantle, it is necessary to solve multi-material and multi-physics problems that are numerically challenging. As an efficient way of solving such a problem, we introduce a code coupling technique. We adapt Pyre, a framework allowing distinct codes to exchange variables through shared interfaces, to the coupling of SNAC, a Lagrangian code for lithospheric dynamics, and CitcomS, an Eulerian code for mantle convection. The continuity of velocities and tractions and no-slip conditions are imposed on the interfaces. The benchmarks against analytic solutions to the bending of a thin plate verifies that SNAC gives an accurate solution for the given traction boundary condition. It is also shown that Pyre can correctly handle the data exchanges at the interfaces. In a preliminary high-resolution model, an elasto-visco-plastic lithosphere is coupled to a Newtonian viscous mantle. This coupled model shows a steady growth of dome in the lithosphere directly above a hot sphere placed in the mantle. However, the two coupled codes incur unnecessarily high numerical costs because they use different methods for time integration.</p

    Detection of Sensor Attack and Resilient State Estimation for Uniformly Observable Nonlinear Systems having Redundant Sensors

    Full text link
    This paper presents a detection algorithm for sensor attacks and a resilient state estimation scheme for a class of uniformly observable nonlinear systems. An adversary is supposed to corrupt a subset of sensors with the possibly unbounded signals, while the system has sensor redundancy. We design an individual high-gain observer for each measurement output so that only the observable portion of the system state is obtained. Then, a nonlinear error correcting problem is solved by collecting all the information from those partial observers and exploiting redundancy. A computationally efficient, on-line monitoring scheme is presented for attack detection. Based on the attack detection scheme, an algorithm for resilient state estimation is provided. The simulation results demonstrate the effectiveness of the proposed algorithm

    Deformation in transcurrent and extensional environments with widely spaced weak zones

    Get PDF
    Previous mechanical models of the western U.S. have concluded that plate boundary forces cannot generate far-field deformation. Such models have ignored preexisting large-scale lithospheric strength variations, an assumption that appears to be inconsistent with seismically determined variations in lithospheric structure. We have formulated a three-dimensional viscous flow model with imposed plate motions, but include lateral zones of low viscosity. These models show that strain rates are concentrated in weak zones with adjacent blocks experiencing little deformation. Deformation can extend far inboard of plate boundaries, contrary to the result of previous studies with rheologically homogeneous plates, and apparently compatible with the variation is seismic velocity and GPS determined deformations in western U.S. These results suggest that plate boundary forces cannot be neglected in the deformation of the western U.S., including the Cenozoic extension of the Basin and Range Province

    Budding of Enveloped Viruses: Interferon-Induced ISG15—Antivirus Mechanisms Targeting the Release Process

    Get PDF
    Pathogenic strains of viruses that infect humans are encapsulated in membranes derived from the host cell in which they infect. After replication, these viruses are released by a budding process that requires cell/viral membrane scission. As such, this represents a natural target for innate immunity mechanisms to interdict enveloped virus spread and recent advances in this field will be the subject of this paper

    Concert recording 2018-11-14

    Get PDF
    [Track 1]. Sonata for violin and piano, op. 45 in C minor. I. Allegro molto ed appassionato / II. Allegretto espressivo alla Romanza - Allegro molto III. Allegro animato - cantabile / Edward Grieg -- [Track 2]. Sonata for cello and piano, op. 119 in C major. I. Andante grave II. Moderato III. Allegro, ma non troppo / Sergei Prokofiev
    corecore