14 research outputs found

    Emergence of memory

    Full text link
    We propose a new self-organizing mechanism behind the emergence of memory in which temporal sequences of stimuli are transformed into spatial activity patterns. In particular, the memory emerges despite the absence of temporal correlations in the stimuli. This suggests that neural systems may prepare a spatial structure for processing information before the information itself is available. A simple model illustrating the mechanism is presented based on three principles: (1) Competition between neural units, 2) Hebbian plasticity, and (3) recurrent connections.Comment: 7 pages, 4 figures, EPL styl

    Visualizing Dynamics of the Hot Topics Using Sequence-Based Self-organizing Maps

    No full text

    Regional anaesthesia: back to basics

    No full text
    Regional anaesthesia has become more popular in recent years with an emphasis on cost effectiveness, bed occupancy, and reduction in hospital acquired infections (HAIs). Anaesthesia is a worrying time for any patient, but now the emphasis is to encourage patient empowerment by involving patients in their own care throughout their holistic journey. This article explores patient selection for regional anaesthesia, and the different types of central and peripheral blocks in line with national policies. the equipment required, pharmacology, toxicity of local anaesthetics, and their physiological effects on the cardivascular, respiratory, and gastrointestinal systems of the body will also be discussed

    Clinical decision support recommending ventilator settings during noninvasive ventilation

    No full text
    NIV therapy is used to provide positive pressure ventilation for patients. There are protocols describing what ventilator settings to use to initialize NIV; however, the guidelines for titrating ventilator settings are less specific. We developed an advisory system to recommend NIV ventilator setting titration and recorded respiratory therapist agreement rates at the bedside. We developed an algorithm (NIV advisor) to recommend when to change the non-invasive ventilator settings of IPAP, EPAP, and FiO(2) based on patient respiratory parameters. The algorithm utilized a multi-target approach; oxygenation, ventilation, and patient effort. The NIV advisor recommended ventilator settings to move the patient's respiratory parameters in a preferred target range. We implemented a pilot study evaluating the usability of the NIV advisor on 10 patients receiving critical care with non-invasive ventilation (NIV). Respiratory therapists were asked their agreement on recommendations from the NIV advisor at the patient's bedside. Bedside respiratory therapists agreed with 91% of the ventilator setting recommendations from the NIV advisor. The POB and VT values were the respiratory parameters that were most often out of the preferred target range. The IPAP ventilator setting was the setting most often considered in need of changing by the NIV advisor. The respiratory therapists agreed with the majority of the recommendations from the NIV advisor. We consider the IPAP recommendations informative in providing the respiratory therapist assistance in targeting preferred POB and Vt values, as these values were frequently out of the target ranges. This pilot implementation was unable to produce the results required to determine the value of the EPAP recommendations. The FiO(2) recommendations from the NIV advisor were treated as ancillary information behind the IPAP recommendations

    Data-driven automated acoustic analysis of human infant vocalizations using neural network tools

    No full text
    Acoustic analysis of infant vocalizations has typically employed traditional acoustic measures drawn from adult speech acoustics, such as f0, duration, formant frequencies, amplitude, and pitch perturbation. Here an alternative and complementary method is proposed in which data-derived spectrographic features are central. 1-s-long spectrograms of vocalizations produced by six infants recorded longitudinally between ages 3 and 11 months are analyzed using a neural network consisting of a self-organizing map and a single-layer perceptron. The self-organizing map acquires a set of holistic, data-derived spectrographic receptive fields. The single-layer perceptron receives self-organizing map activations as input and is trained to classify utterances into prelinguistic phonatory categories (squeal, vocant, or growl), identify the ages at which they were produced, and identify the individuals who produced them. Classification performance was significantly better than chance for all three classification tasks. Performance is compared to another popular architecture, the fully supervised multilayer perceptron. In addition, the network’s weights and patterns of activation are explored from several angles, for example, through traditional acoustic measurements of the network’s receptive fields. Results support the use of this and related tools for deriving holistic acoustic features directly from infant vocalization data and for the automatic classification of infant vocalizations

    Breathing variability predicts the suggested need for corrective intervention due to the perceived severity of patient-ventilator asynchrony during NIV

    No full text
    Patient-ventilator asynchrony is associated with intolerance to noninvasive ventilation (NIV) and worsened outcomes. Our goal was to develop a tool to determine a patient needs for intervention by a practitioner due to the presence of patient-ventilator asynchrony. We postulated that a clinician can determine when a patient needs corrective intervention due to the perceived severity of patient-ventilator asynchrony. We hypothesized a new measure, patient breathing variability, would indicate when corrective intervention is suggested by a bedside practitioner due to the perceived severity of patient-ventilator asynchrony. With IRB approval data was collected on 78 NIV patients. A panel of experts reviewed retrospective data from a development set of 10 NIV patients to categorize them into one of the three categories. The three categories were; "No to mild asynchrony-no intervention needed", "moderate asynchrony-non-emergent corrective intervention required", and "severe asynchrony-immediate intervention required". A stepwise regression with a F-test forward selection criterion was used to develop a positive linear logic model predicting the expert panel's categorizations of the need for corrective intervention. The model was incorporated into a software tool for clinical implementation. The tool was implemented prospectively on 68 NIV patients simultaneous to a bedside practitioner scoring the need for corrective intervention due to the perceived severity of patient-ventilator asynchrony. The categories from the tool and the practitioner were compared with the rate of agreement, sensitivity, specificity, and receiver operator characteristic analyses. The rate of agreement in categorizing the suggested need for clinical intervention due to the perceived presence of patient-ventilator asynchrony between the tool and experienced bedside practitioners was 95% with a Kappa score of 0.85 (p < 0.001). Further analysis found a specificity of 84% and sensitivity of 99%. The tool appears to accurately match the suggested need for corrective intervention by a bedside practitioner. Application of the tool allows for continuous, real time, and non-invasive monitoring of patients receiving NIV, and may enable early corrective interventions to ameliorate potential patient-ventilator asynchrony
    corecore